• Title/Summary/Keyword: Bioaerosol

Search Result 54, Processing Time 0.016 seconds

Bacterial Filtration Efficiencies of KF94 Masks According to Wearing Duration (착용 기간에 따른 KF94 마스크 세균여과효율 변화 연구)

  • Jongmin Park;Yeram Yang;SungJun Park;Kiyoung Lee;Cheonghoon Lee;Chungsik Yoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.1
    • /
    • pp.48-56
    • /
    • 2024
  • Objectives: The coronavirus pandemic that began in 2019(COVID-19) has been one of the worst pandemics of the 21st century. Masks have been used to prevent COVID-19, but there are currently no standards for the long-term use of masks in the Republic of Korea. This study was conducted to assess the microbiological safety of KF94(Korea Filter 94) disposable face masks according to wearing duration by evaluating the bacterial filtration efficiencies of masks worn by research participants. Methods: A commercially available KF94 mask certified by the Ministry of Food and Drug Safety(MFDS) in the Republic of Korea was selected as the test mask. The research participants(n = 15) wore masks for the durations of one, three, and seven days. Participants also reported several parameters, including wearing time, makeup frequency, and storage. Bacterial filtration efficiencies of the worn masks were measured by a mask bioaerosol filtration tester. Staphylococcus aureus(S. aureus) was used as the test bacteria and quantitatively measured through the cultivation method. Then, bacterial filtration efficiency was calculated using the formula suggested by the MFDS. Results: All worn masks showed over 99.98% of mean bacterial filtration efficiency for S. aureus. There were no significant differences among bacterial filtration efficiencies of face masks according to wearing duration. There was also no significant difference among bacterial filtration efficiencies among participants. There was no correlation between the results of bacterial filtration efficiencies and reported parameters from participants. Conclusions: In the absence of significant external damage to the mask, the bacterial filtration efficiency of the mask can be maintained even after seven days of wearing. This result suggests that KF94 masks certified by the MFDS can be used repeatedly for about a week without loss of bacterial filtration efficiency.

Distribution and Characteristics of Culturable Airborne Bacteria and Fungi in Municipal Wastewater Treatment Plants (하수처리시설에서 배양 가능한 공기중 미생물의 분포 및 특성)

  • Park, Kyo-Nam;Koh, Ji-Yun;Jeong, Choon-Soo;Kim, Jong-Seol
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.38-49
    • /
    • 2011
  • Bioaerosols generated from wastewater treatment plants may create health risks for plant workers and nearby residents. To determine the levels of culturable airborne bacteria and fungi in bioaerosols, samples were seasonally collected above and near the aeration tanks of one feces-urine and three sewage treatment plants in Ulsan, Korea with an impaction-type sampler. In the feces-urine treatment plant, concentrations of heterotrophic bacteria were between $1.3({\pm}0.2){\times}10^3$ and $2.6({\pm}1.2){\times}10^4$ MPN/$m^3$ above the aeration tank and between $1.7({\pm}1.0){\times}10^2$ and $7.2({\pm}2.2){\times}10^3$ MPN/$m^3$ near the aeration tank. Coliform bacteria were detected both above and near the aeration tank. In cases of sewage treatment plant, the numbers of heterotrophic bacteria ranged from $1.9({\pm}1.2){\times}10^1$ to $1.8({\pm}1.2){\times}10^4$ MPN/$m^3$ above the aeration tank and from $5.0({\pm}2.8){\times}10^0$ to $6.6({\pm}2.0){\times}10^3$ MPN/$m^3$ near the aeration tank. At reference sites, the concentrations of heterotrophs in ambient air were measured between $7.0{\times}10^0$ and $2.7{\times}10^1$ MPN/$m^3$. When we isolated and tentatively identified heterotrophic bacteria, Pseudomonas luteola was the most dominant species in bioaerosols from wastewater treatment plants, whereas the most abundant one in reference samples was Micrococcus sp. When we measured fungal concentrations in bioaerosols, they were rather similar regardless of sampling locations and seasons, and such genera as Cladosporium, Alternaria, and Penicillium were commonly identified.

Distribution and Characteristics of Microorganisms Associated with Settled Particles During Asian Dust Events (황사 발생 기간 낙하먼지에 포함된 미생물의 분포 및 특성)

  • Koh, Ji-Yun;Jang, Chan-Gook;Cha, Min-Ju;Park, Kyo-Nam;Kim, Min-Kyu;Kim, Jong-Seol
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.134-140
    • /
    • 2012
  • Asian dust storms originating in the arid desert of China and Mongolia usually occur from late winter through spring, and more than one million tons of dust per year is transported to the Korean Peninsula by the prevalent westerly winds. We supposed that these dust particles could include bioaerosols and act as carriers of microorganisms. In order to clarify the dynamics of microorganisms moving with these particles, the concentration and composition of microorganisms associated with settled particles were compared between samples collected during Asian dust events and those under non-dust periods. From February to April 2008, settled dust particles were collected at one location in Ulsan using rainfall meter of 200 mm diameter. During this period, there was one Asian dust event in Ulsan. The bacterial concentrations were higher in samples collected during Asian dust event than those under non-dust period, whereas fungal concentrations were rather similar regardless of the Asian dust event. We analyzed 16S rRNA gene sequences of 45 bacterial isolates obtained from the settled particle samples. These isolates belonged to either genus Bacillus or genus Streptococcus and were tentatively identified as B. amyloliquefaciens, B. aryabhattai, B. atrophaeus, B. licheniformis, B. megaterium, B. methylotrophicus, B. pumilus, B. sonorensis, B. subtlis, B. vallismortis, S. epidermidis, and S. succinus. In cases of fungal isolates, genera such as Mucor, Alternaria, Cladosporium, and Aspergillus were tentatively identified from samples collected at both Asian dust and non-Asian dust periods. It appears that endospore-forming bacteria such as Bacillus sp. rather than fungal spores are more likely to be associated with Asian dust particles.

Distribution of Culturable Bacteria of Bioaerosol according to Land Type in Winter in the City Center (도심지 겨울철 토지피복 유형별 바이오에어로졸 중 배양성 세균 분포)

  • Kim, Jeong-Ho;Yun, Yong-Han;Kim, Hak-Gi;Lee, Myeong-Hun;Park, Yeong-jin;Lee, Dong-Jae;Sin, Yong-jin
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.6
    • /
    • pp.669-678
    • /
    • 2021
  • This study surveyed three land cover types in Chungju City in Chungcheongbuk Province to check the distribution of cultured bacteria in bio-aerosols according to land cover type. It was possible to compare and analyze the distribution of bacteria according to microclimatic changes at each measurement point by examining meteorological factors and bio-aerosols according to land cover. The microclimate temperature in each measurement point was 8.7℃ for the urban forest, 10.8℃ for the waterside green area, and 10.2℃ for the urban area, indicating the urban forest had the lowest temperature among the measurement points. The relative humanity was 61.8% fin the urban forest, 59.3% in the waterside green area, and 55.7% in the urban area, indicating that the urban forest was the most humid among the measurement points. The identified bacteria were found to be 43 genera and 99 species. In terms of species diversity of cultured bacteria, 22 genera were found in the waterside green area, 21 genera in the urban forest, and 17 genera in the urban area, 37 species were found in the waterside green area, 31 species in the urban area, and 31 species in the urban forest. Bacillus toyonensis and Pseudarthrobacter oxydan were the species present in all three types of measurement sites, and Herbiconiux flava was confirmed to inhabit green areas such as urban forests and waterside green areas. The analysis result of the bacterial concentration according to the microclimatic environment in each measurement point was 333 CFU/m3 in the urban forest, 287 CFU/m3, in the waterside green area, and 173 CFU/m3 in the downtown area. The relative humidity and wind speed were analyzed to show a similar trend as the concentration. This study is expected to provide basic data for healthy urban management and green area creation by identifying the distribution of cultured bacteria in bio-aerosols according to land cover type and comparing and analyzing the traits of bio-aerosol in each measurement point.