• Title/Summary/Keyword: Bioactive Peptide

Search Result 94, Processing Time 0.02 seconds

Isolation, Purification and Characterization of Antioxidative Bioactive Elastin Peptides from Poultry Skin

  • Nadalian, Mehdi;Kamaruzaman, Nurkhuzaiah;Yusop, Mohd Shakir Mohamad;Babji, Abdul Salam;Yusop, Salma Mohamad
    • Food Science of Animal Resources
    • /
    • v.39 no.6
    • /
    • pp.966-979
    • /
    • 2019
  • Muscle-based by-products are often undervalued although commonly reported having a high amount of natural bioactive peptides. In this study, elastin was isolated from the protein of broiler hen skin while its hydrolysate was prepared using Elastase. Assessment of antioxidative properties of elastin-based hydrolysate (EBH) was based on three different assays; 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical and metal chelating ability. The EBH was purified further using ultrafiltration, gel filtration and Reverse- Phase High-Performance Liquid Chromatography (RP-HPLC). The IC50 of ABTS radical activities for EBH were decreased as EBH further purified using ultrafiltration (EBH III; 0.66 mg/mL)>gel filtration (EB-II; 0.42 mg/mL)>RP-HPLC (EB-II4; 0.12 mg/mL). The sequential identification of the peptide was done by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/ TOF-MS) of the potent fractions obtained from RP-HPLC (EB-II4). The presence of hydrophobic amino acids (Val and Pro) in the peptide sequences could potentially contribute to the high antioxidant activity of EBH. The sequences GAHTGPRKPFKPR, GMPGFDVR and ADASVLPK were identified as antioxidant peptides. In conclusion, the antioxidative potential from poultry skin specifically from elastin is evident and can be explored to be used in many applications such as health and pharmaceutical purposes.

Isolation and Charaterization of Bioactive Peptides from Hwangtae (yellowish dried Alaska pollack) Protein Hydrolysate

  • Cho, San-Soon;Lee, Hyo-Ku;Yu, Chang-Yeon;Kim, Myong-Jo;Seong, Eun-Soo;Ghimire, Bimal Kumar;Son, Eun-Hwa;Choung, Myoung-Gun;Lim, Jung-Dae
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.3
    • /
    • pp.196-203
    • /
    • 2008
  • Hwangtae, dried Alaska pollack, is a major storage product in the fish processing industry. Hwangtae is prepared by removing the internal organs and drying outdoors during the cold witner months by allowing it to thaw during the daytime and re-freeze at night under sub-zero ($-10^{\circ}C$) conditions and gradually dry from December until the next April for around 5 months from Myungtae. In this study, ground Hwangtae was hydrolyzed using two proteolytic enzymes (pepsin and alcalase) which produced five soluble active peptides from Hwangtae (yellowish dried Pollack, Theragra chalcogramma) protein. Two different peptides with strong antioxidative activity were isolated from the hydrolysate using consecutive chromatographic methods of Sephadex G-25 gel, ion-exchange chromatography on a Sepharose-Sephadex C-25 gel, and high-performance liquid chromatography. The isolated peptides, APO1 and APO2, were composed of 16 and 13 amino acid residues, respectively. Both peptides contained a Gly residue at the C-terminus and the repeating motif Gly-Pro-Hyp. The peptide with a molecular weight less than 1,000 Daltons (APACE) obtained from enzymatic hydrolysates of Hwangtae exhibited the highest ACE inhibitory activity. The APACE peptides was composed of 4 amino acid residues (Gly-Leu-Leu-Pro). These results suggest that Hwangtae hydrolysates could be a good source of peptides with ACE inhibitory activity. Biochemical analysis indicated that two 70 kDa peptides (APG1 and APG2) isolated from the hydrolysate had gelatinoytic activity, which was shown to be a calcium dependent protease type as showed by gelatin SDS PAGE.

Exploring the Utilization of Bovine Blood as a Source of Antioxidant Peptide: Production, Concentration, Identification, and In Silico Gastrointestinal Digestion

  • Saruttiwong Boonkong;Pichitpon Luasiri;Jaksuma Pongsetkul;Saranya Suwanandgul;Sukanya Chaipayang;Wittawat Molee;Papungkorn Sangsawad
    • Food Science of Animal Resources
    • /
    • v.44 no.6
    • /
    • pp.1283-1304
    • /
    • 2024
  • This study delves into the pivotal industrial process of efficiently managing livestock waste. Specifically, the study concentrates on harnessing the potential of bovine blood through enzymatic hydrolysis to produce antioxidant peptides. The whole bovine blood sample, subjected to a 90℃ heat treatment for 30 min, underwent hydrolysis utilizing various commercial enzymes, alcalase, neutrase, and papain. Through neutrase hydrolysis (BB-N), we identified optimized conditions crucial for achieving heightened antioxidant activities and 40% protein recovery. Ultrafiltration with a molecular weight cutoff of 3 kDa was employed to concentrate the BB-N peptide, demonstrating the highest antioxidant and protein yield. The gel electrophoresis profile confirmed the denaturation of key proteins like albumin, globulin, and fibrinogen before digestion, while the BB-N derived after digestion contained peptides below 16 kDa. Post-concentration, the permeation of UF-3 kDa underwent purification, and the peptide sequence was discerned using liquid chromatography with tandem mass spectrometry. The exploration identified nine novel peptides- IWAGK, VDLL, MTTPNK, MPLVR, KIII, LPQL, TVIL, DFPGLQ, and VEDVK. Notably, the IWAGK sequence emerged as the most potent antioxidant activity peptide. Subsequent in-silico gastrointestinal digestion predicted structural changes in these peptides. While IWAGK, VDLL, MPLVR, LPQL, TVIL, and DFPGLQ could be fragmented into bioactive dipeptides and tripeptides, MTTPNK, KIII, and VEDVK exhibited resistance, suggesting potential circulation through the bloodstream to reach the target organ. Consequently, our study explores the potential use of BB-N as a novel dietary ingredient with health benefits. In vivo studies are needed to validate and extend our findings.

Cloning and functional expression of a cecropin-A gene from the Japanese oak silkworm, Antheraea yamamai (천잠 cecropin-A 유전자 클로닝 및 재조합 발현)

  • Kim, Seong-Ryul;Choi, Kwang-Ho;Kim, Sung-Wan;Goo, Tae-Won;Hwang, Jae-Sam
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • A cecropin-A gene was isolated from the immunized larvae of the Japanese oak silkworm, Antheraea yamamai and designed Ay-CecA. The complete Ay-CecA cDNA consists of 419 nucleotides with 195 bp open reading frame encoding a 64 amino acid precursor that contains a putative 22-residue signal peptide, a 4-residue propetide and a 37-residue mature peptide with a theoretical mass of 4046.81. The deduced amino acid sequence of the peptide evidenced a significant degree of identity (62 ~ 78% identity) with other lepidopteran cecropins. Like many insect cecropin, Ay-CecA also harbored a glycine residue for C-terminal amidation at the C-end, which suggests potential amidation. To understand this peptide better, we successfully expressed bioactive recombinant Ay-CecA in Escherichia coli that are highly sensitive to the mature peptide. For this, we fused mature Ay-CecA gene with insoluble protein ketosteroid isomerase (KSI) gene to avoid the cell death during induction. The fusion KSI-CecA protein was expressed as inclusion body. The expressed fusion protein was purified by Ni-NTA immobilized metal affinity chromatography (IMAC), and cleaved by cyanogen bromide (CNBr) to release recombinant Ay-CecA. The purified recombinant Ay-CecA showed considerably antibacterial activity against Gram-negative bacteria, E. cori ML 35, Klebsiella pneumonia and Pseudomonas aeruginosa. Our results proved that this peptide with a potent antibacterial activity may play a role in the immune response of Japanese oak silkworm.

DEVELOPMENT OF A BIOACTIVE CELLULOSE MEMBRANE FROM SEA SQUIRT SKIN FOR BONE REGENERATION - A PRELIMINARY RESEARCH (멍게와 미더덕 피부의 천연 셀룰로오스 각질을 이용한 골재생 효능을 가진 생활성막의 개발 - 예비 연구)

  • Kim, Soung-Min;Lee, Jong-Ho;Jo, Joung-Ae;Lee, Seung-Cheol;Lee, Suk-Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.5
    • /
    • pp.440-453
    • /
    • 2005
  • Objectives : To develop a bioactive membrane for guided bone regeneration (GBR), the biocompatibility and bone regenerating capacity of the cellulose membrane obtained from the Ascidians squirt skin were evaluated. Materials and methods : After processing the pure cellulose membrane from the squirt skin, the morphological study, amino acid analysis and the immunoreactivity of the cellulose membrane were tested. Total eighteen male Spraque-Dawley rats (12 weeks, weighing 250 to 300g) were divided into two control (n=8) and another two experimental groups (n=10). In the first experimental group (n=5), the cellulose membrane was applicated to the 8.0 mm sized calvarial bone defect and the same sized defect was left without cellulose membrane in the first control group (n=4). In the another experimental group (n=5), the cellulose membrane was applicated to the same sized calvarial bone defect after femoral bone graft and the same sized defect with bone graft was left without cellulose membrane in the another control group (n=4). Each group was sacrificed after 6 weeks, the histological study with H&E and Masson trichrome stain was done, and immunohistochemical stainings of angiogenin and VEGF were also carried out. Results : The squirt skin cellulose showed the bio-inductive effect on the bone and mesenchymal tissues in the periosteum of rat calvarial bone. This phenomenon was found only in the inner surface of the cellulose membrane after 6 weeks contrast to the outer surface. Bone defect covered with the bioactive cellulose membrane showed significantly greater bone formation compared with control groups. Mesenchymal cells beneath the inner surface of the bioactive cellulose membrane were positive to the angiogenin and VEGF antibodies. Conclusion : We suppose that there still remains extremely little amount of peptide fragment derived from the basement membrane matrix proteins of squirt skin, which is a kind of anchoring protein composed of glycocalyx. This composition could prevent the adverse immunological hypersensitivity and also induce bioactive properties of cellulose membrane. These properties induced the effective angiogenesis with rapid osteogenesis beneath the inner surface of cellulose membrane, and so the possibilities of clinical application in dental field as a GBR material will be able to be suggested.

Effects of sea horse (Hippocampus abdominalis)-derived protein hydrolysate on skeletal muscle development

  • Muthuramalingam, Karthika;Kim, Jun Ho;Jeon, You Jin;Rho, Sum;Kim, Young Mee;Cho, Moonjae
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.373-381
    • /
    • 2017
  • Hippocampus abdominalis, the big belly sea horse, is widely known for its medicinal value in Chinese folk medicine. In this study, extract obtained by proteolytic degradation of this species was investigated for its effects on skeletal muscle development, both in vitro and in vivo. Muscle cell lines ($C_2C_{12}$ and $L_6$) treated with the bioactive peptide did not have any detrimental effects on the cell viability, which was above 80%. Optical microscopy analysis on the morphology of the sea horse extract (SHE)-treated cells showed enhanced differentiating ability with myotube formation. Moreover, cells incubated with the hydrolysate displayed decreased proliferation rate, as recorded by the electric cell substrate impedance sensing system, thereby supporting enhanced differentiation. For a period of 12 weeks, mice models were fed with SHE and simultaneously subjected to treadmill exercise, which increased the expression of Myogenin, a key myogenic regulatory factor. In addition, there was an increase in the expression of AMPK- and Cytochrome C, both of which are important in mitochondrial biogenesis. Thus, the SHE from Hippocampus abdominalis can be a promising candidate as protein supplement aiding muscle development.

Comparative proteomic analysis of Celastrus hindsii Benth. phenotypes reveals an intraspecific variation

  • Nguyen, Van Huy;Pham, Thanh Loan;Ha, Thi Tam Tien;Hoang, Thi Le Thu
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.273-282
    • /
    • 2020
  • In Vietnam, Celastrus hindsii Benth, a medicinal plant rich in secondary metabolites, has been used to alleviate distress caused by ulcers, tumors, and inflammation for generations. The occurrence of two phenotypes, Broad Leaf (BL) and Narrow Leaf (NL), has raised questions about the selection of appropriate varieties for conservation and crop improvement to enhance medicinal properties. This study examined molecular differences in C. hindsii by comparing protein profiles between the NL and BL types using 2D-PAGE and MS. Peptide sequences and proteins were identified by matching MS data against the MSPnr100 databases and verified using the MultiIdent tool on ExPASy and the Blast2GO software. Our results revealed notable variations in protein abundance between the NL and BL proteomes. Selected proteins were confidently identified from 12 protein spots, thereby highlighting the molecular variation between NL and BL proteomes. Upregulated proteins in BL were found to be associated with flavonoid and amino acid biosynthesis as well as nuclease metabolism, which probably attributed to the intraspecific variations. Several bioactive proteins identified in this study can have applications in cancer therapeutics. Therefore, the BL phenotype characterized by healthier external morphological features has higher levels of bioactive compounds and could be better suited for medicinal use.

Characteristic as a Gene Delivery System of Water Soluble Chitosan Conjugated with Cationic Peptide (양이온 펩타이드가 컨쥬게이트된 수용성 키토산의 유전자 전달체로서의 특성)

  • Kim, Young-Min;Kim, Ji-Ho;Park, Seong-Cheol;Park, Yung-Hoon;Jang, Mi-Kyeong
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.300-311
    • /
    • 2016
  • Recently gene delivery has been designed newly using bioactive biomaterial and applied in the various field by many researchers. In this study, we proposed a new gene delivery system which has the capability of targeting effect in the specific tissue and remarkably enhanced transfection efficiency. We investigated $^1H-NMR$ spectroscopy, particle size analyzer and gel retardation to confirm the correct preparation of gene delivery. Also, we identified the hemo-compatibility of gene delivery by hemolysis assay, non-cytotoxicity by MTT test and transfection efficiency. The uptake mechanism of the gene carrier was confirmed using inhibitor agent such as sodium azide, indomethacin, quercetin, colchicine, and chloropromazine. As a results, it was identified that gene carrier prepared by in this study entered in the cell by the microtubule-dependent, energy-dependent and clathrin-mediated endocytosis pathway.

Effect of Lunasin Extracted from Millet (Panicum miliaceum) on the Activity of Histone Acetyltransferases, yGCN5 and p/CAF

  • Park, Jae-Ho;Jeong, Jin-Boo;Lee, Jeong-Rak;Lumen, Ben O. De;Jeong, Hyung-Jin
    • Korean Journal of Plant Resources
    • /
    • v.22 no.3
    • /
    • pp.203-208
    • /
    • 2009
  • Lunasin is a unique 43-amino acid peptide which has shown a chemopreventive in mammalian cells and in a skin cancer mouse model. In search for new sources of lunasin and the role of cereals in cancer prevention, we report here the properties of lunasin purified from millet. Stability of millet lunasin was measured by in vitro digestibility assay using pepsin and pancreatin. Inhibition of HAT (histone acetyltransferase) and nuclear localization in mammalian cells were used to measure lunasin bioactivity as the cancer chemopreventive agent. Lunasin present in millet crude protein was stable to pepsin and pancreatin in in vitro digestion and inhibited the activities of HATs. When added exogenously, lunasin purified from millet internalized in the nuclei of mouse fibroblast cells. On the base of this result, we conclude that lunasin in millet is bioactive and consumption of millet may play an important role on cancer prevention in millet-consuming populations.

Anti-aging potential of fish collagen hydrolysates subjected to simulated gastrointestinal digestion and Caco-2 cell permeation

  • Je, Hyun Jeong;Han, Yoo Kyung;Lee, Hyeon Gyu;Bae, In Young
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.101-107
    • /
    • 2019
  • The objectives of this study were to evaluate the anti-aging effects and investigate the effect of simulated gastrointestinal (GI) digestion on the anti-aging properties and intestinal permeation of the potential fish collagen hydrolysates (FCH). Therefore, procollagen synthesis, matrix metalloproteinase-1 (MMP-1) production, and Caco-2 cell permeability were analyzed before and after in vitro digestion for FCHs, low-molecular weight fractions (<1 kDa), and high molecular weight fractions (>1 kDa). After being subjected to GI digestion, the level of MMP-1 inhibition was maintained, although the procollagen production was significantly (>20%) lower with all samples. Also, the digested FCHs and their <1 kDa fraction yielded 9.1 and 13.8% increased peptide transport, respectively, compared to undigested samples. Based on the effective intestinal permeation and high digestive enzyme stability, the <1 kDa fraction of FCHs is a potential bioactive material suitable for anti-aging applications in the food and cosmetics industries.