• Title/Summary/Keyword: Bioactive Compound

Search Result 312, Processing Time 0.028 seconds

Prebiotics enhance the biotransformation and bioavailability of ginsenosides in rats by modulating gut microbiota

  • Zhang, Xiaoyan;Chen, Sha;Duan, Feipeng;Liu, An;Li, Shaojing;Zhong, Wen;Sheng, Wei;Chen, Jun;Xu, Jiang;Xiao, Shuiming
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.334-343
    • /
    • 2021
  • Background: Gut microbiota mainly function in the biotransformation of primary ginsenosides into bioactive metabolites. Herein, we investigated the effects of three prebiotic fibers by targeting gut microbiota on the metabolism of ginsenoside Rb1 in vivo. Methods: Sprague Dawley rats were administered with ginsenoside Rb1 after a two-week prebiotic intervention of fructooligosaccharide, galactooligosaccharide, and fibersol-2, respectively. Pharmacokinetic analysis of ginsenoside Rb1 and its metabolites was performed, whilst the microbial composition and metabolic function of gut microbiota were examined by 16S rRNA gene amplicon and metagenomic shotgun sequencing. Results: The results showed that peak plasma concentration and area under concentration time curve of ginsenoside Rb1 and its intermediate metabolites, ginsenoside Rd, F2, and compound K (CK), in the prebiotic intervention groups were increased at various degrees compared with those in the control group. Gut microbiota dramatically responded to the prebiotic treatment at both taxonomical and functional levels. The abundance of Prevotella, which possesses potential function to hydrolyze ginsenoside Rb1 into CK, was significantly elevated in the three prebiotic groups (P < 0.05). The gut metagenomic analysis also revealed the functional gene enrichment for terpenoid/polyketide metabolism, glycolysis, gluconeogenesis, propanoate metabolism, etc. Conclusion: These findings imply that prebiotics may selectively promote the proliferation of certain bacterial stains with glycoside hydrolysis capacity, thereby, subsequently improving the biotransformation and bioavailability of primary ginsenosides in vivo.

Antioxidant and Hepatoprotective Activities of Bitter Melon (Momordica charantia Linn.) Leaves against Oxidative Stress (산화적 스트레스에 대한 여주(Momordica charantia Linn.)잎의 항산화 활성 및 간세포 보호능)

  • Jeon, Ahyeong;Cheon, Wonyoung;Yoon, Jimin;Kim, Dae-Jung;Kim, Younghwa
    • Journal of the Korean Society of Food Culture
    • /
    • v.35 no.6
    • /
    • pp.597-604
    • /
    • 2020
  • This study examined the bioactive compound content and the antioxidant activities of bitter melon (Momordica charantia Linn.) leaves. The content of vitamin C, beta-carotene, and total carotenoids was 69.77, 45.68, and 65.08 mg/100 g, respectively. To investigate the antioxidant capacity, bitter melon leaves were extracted using various concentrations of ethanol (60, 80, or 100%). Highest content of total polyphenols (18.07 mg gallic acid equivalent/g) and flavonoids (4.53 mg cathechin equivalent/g) was found in the 100% ethanolic extract of the leaves (E100). Also, the E100 extract showed the highest levels of 2,2'azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and α-α-diphenyl-β-picrylhydrazyl (DPPH) free radical scavenging activities. Reducing power was also the highest (39.21 mg Trolox equivalent/g) in E100 extract. The E100 extract effectively inhibited lipid peroxidation by 91.45% compared to the control group. Also, the E100 extract showed a cytoprotective effect against oxidative stress in HepG2 cells and decreased the generation of intracellular reactive oxygen species. These results suggest that bitter melon leaves could be regarded as a potential source of natural antioxidants.

Marein Prevented LPS-Induced Osteoclastogenesis by Regulating the NF-κB Pathway In Vitro

  • Li, Yuling;Zhang, Jing;Yan, Caiping;Chen, Qian;Xiang, Chao;Zhang, Qingyan;Wang, Xingkuan;Jiang, Ke
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.141-148
    • /
    • 2022
  • Many bone diseases such as osteolysis, osteomyelitis, and septic arthritis are caused by gram-negative bacterial infection, and lipopolysaccharide (LPS), a bacterial product, plays an essential role in this process. Drugs that inhibit LPS-induced osteoclastogenesis are urgently needed to prevent bone destruction in infective bone diseases. Marein, a major bioactive compound of Coreopsis tinctoria, possesses anti-oxidative, anti-inflammatory, anti-hypertensive, anti-hyperlipidemic, and anti-diabetic effects. In this study, we measured the effect of marein on RAW264.7 cells by CCK-8 assay and used TRAP staining to determine osteoclastogenesis. The levels of osteoclast-related genes and NF-κB-related proteins were then analyzed by western blot, and the levels of pro-inflammatory cytokines were quantified by ELISA. Our results showed that marein inhibited LPS-induced osteoclast formation by osteoclast precursor RAW264.7 cells. The effect of marein was related to its inhibitory function on expressions of pro-inflammatory cytokines and osteoclast-related genes containing RANK, TRAF6, MMP-9, CK, and CAII. Additionally, marein leads to markedly inhibited NF-κB signaling pathway activation in LPS-induced RAW264.7 cells. Concurrently, when the NF-κB signaling pathway was inhibited, osteoclast formation and pro-inflammatory cytokine expression were decreased. Collectively, marein could inhibit LPS-induced osteoclast formation in RAW264.7 cells via regulating the NF-κB signaling pathway. Our data demonstrate that marein might be a potential drug for bacteria-induced bone destruction disease. Our findings provide new insights into LPS-induced bone disease.

Cholinesterase inhibitory activities of neuroprotective fraction derived from red alga Gracilaria manilaensis

  • Pang, Jun-Rui;How, Sher-Wei;Wong, Kah-Hui;Lim, Siew-Huah;Phang, Siew-Moi;Yow, Yoon-Yen
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.2
    • /
    • pp.49-63
    • /
    • 2022
  • Anti-cholinesterase (ChE)s are commonly prescribed as the symptomatic treatment of Alzheimer's disease. They are applied to prevent the breakdown of neurotransmitter acetylcholine (ACh) that bind to muscarinic and nicotinic receptors in the synaptic cleft. Seaweeds are one of the richest sources of bioactive compounds for both nutraceuticals and pharmacognosy applications. This study aimed to determine the anti-ChEs activity of Gracilaria manilaensis, one of the red seaweeds notables for its economic importance as food and raw materials for agar production. Methanol extracts (GMM) of G. manilaensis were prepared through maceration, and further purified with column chromatography into a semi-pure fraction. Ellman assay was carried out to determine the anti-acetylcholinesterase (AChE) and anti-butyrylcholinesterase (BuChE) activities of extracts and fractions. Lineweaver-Burk plot analysis was carried out to determine the inhibition kinetic of potent extract and fraction. Major compound(s) from the most potent fraction was determined by liquid chromatography-mass spectrometry (LCMS). GMM and fraction G (GMMG) showed significant inhibitory activity AChE with EC50 of 2.6 mg/mL and 2.3 mg/mL respectively. GMM and GMMG exhibit mixed-inhibition and uncompetitive inhibition respectively against AChE. GMMG possesses neuroprotective compounds such as cynerine A, graveolinine, militarinone A, eplerenone and curumenol. These findings showed a promising insight of G. manilaensis to be served as a nutraceutical for neuronal health care in the future.

Involvement of adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 in diallyl trisulfide-induced cytotoxicity in hepatocellular carcinoma cells

  • Guan, Feng;Ding, Youming;He, Yikang;Li, Lu;Yang, Xinyu;Wang, Changhua;Hu, Mingbai
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.457-468
    • /
    • 2022
  • It has been demonstrated that APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) is involved in the regulation of several growth-related signaling pathways and thus closely associated with the development and progression of some cancers. Diallyl trisulfide (DAT), a garlic-derived bioactive compound, exerts selective cytotoxicity to various human cancer cells through interfering with pro-survival signaling pathways. However, whether and how DAT affects survival of human hepatocellular carcinoma (HCC) cells remain unclear. Herein, we tested the hypothesis of the involvement of APPL1 in DAT-induced cytotoxicity in HCC HepG2 cells. We found that Lys 63 (K63)-linked polyubiquitination of APPL1 was significantly decreased whereas phosphorylation of APPL1 at serine residues remained unchanged in DAT-treated HepG2 cells. Compared with wild-type APPL1, overexpression of APPL1 K63R mutant dramatically increased cell apoptosis and mitigated cell survival, along with a reduction of phosphorylation of STAT3, Akt, and Erk1/2. In addition, DAT administration markedly reduced protein levels of intracellular TNF receptor-associated factor 6 (TRAF6). Genetic inhibition of TRAF6 decreased K63-linked polyubiquitination of APPL1. Moreover, the cytotoxicity impacts of DAT on HepG2 cells were greatly attenuated by overexpression of wild-type APPL1. Taken together, these results suggest that APPL1 polyubiquitination probably mediates the inhibitory effects of DAT on survival of HepG2 cells by modulating STAT3, Akt, and Erk1/2 pathways.

Potential of Hanjeli (Coix lacryma-jobi) essential oil in preventing SARS-CoV-2 infection via blocking the Angiotensin Converting Enzyme 2 (ACE2) receptor

  • Diningrat, Diky Setya;Sari, Ayu Nirmala;Harahap, Novita Sari;Kusdianti, Kusdianti
    • Journal of Plant Biotechnology
    • /
    • v.48 no.4
    • /
    • pp.289-303
    • /
    • 2021
  • Covid-19 is an ongoing pandemic as we speak in 2022. This infectious disease is caused by the SARS-CoV-2 virus, which infects cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor on the cell surface. Thus, strategies that inhibit the binding of SARS-CoV-2 to the ACE2 receptor can stop this contagion. Hanjeli (Coix lacryma-jobi) essential oil contains many bioactive compounds, including dodecanoic acid; tetradecanoic acid; 7-Amino-8-imino-2-(2-imino-2H-chromen-3-yl); and 1,5,7,10-tetraaza-phen-9-one. These compounds suppress viral replication and may prevent Covid-19. Accordingly, this study assessed whether, these four limonoid compounds can block the ACE2 receptor. To this end, their physicochemical properties were predicted using Lipinski's "rule of five" on the SwissADME website, and their toxicity was assessed using the online tools ProTox and pkCSM. Additionally, their interactions with the ACE2 receptor were predicted via molecular docking using Autodock Vina. All the four compounds satisfied the "rule of five" and tetradecanoic acid was predicted to have a higher affinity than the comparison compound remdesivir and the original ligand of ACE2. Molecular docking results suggested that the compounds from hanjeli essential oil interact with the active site of the ACE2 receptor similarly as the original ligand and remdesivir. In conclusion, hanjeli essential oil contains compounds predicted hinder the interaction of SARS-CoV-2 with the ACE2 receptor. Accordingly, our data may facilitate the development of a phytomedical strategy against SARS-CoV-2 infection.

In-vitro Antimalarial Investigations and Molecular Docking Studies of Compounds from Trema orientalis L. (blume) Leaf Extract

  • Samuel, Babatunde Bolorunduro;Oluyemi, Wande Michael;Okedigba, Ayoyinka Oluwaseun
    • Natural Product Sciences
    • /
    • v.28 no.2
    • /
    • pp.45-52
    • /
    • 2022
  • The identification of Plasmodium falciparum enoyl acyl-carrier protein reductase (pfENR) is considered as a potential biological target against malaria. Trema orientalis is considered a rich source of phytochemicals useful in malaria treatment. This study evaluated the in-vitro inhibitory activity of the extract and isolated compounds of T. orientalis leaf; the isolated compounds and the analogues of the most active compound were subjected to in-silico molecular docking studies on pfENR. The methanolic extract of T. orientalis was subjected to repeated chromatographic separation which led to the isolation of some compounds. The isolated compounds from the plant were examined for their antimalarial activity using β-hematin inhibition assay. Virtual screening via molecular docking and ADMET studies were conducted to gain insight into the mechanism of binding of ligand and to identify effective pfENR inhibitors. The isolated compounds and the analogues of the most active isolates were gotten from PubChem library for use in docking study. Hexacosanol and β-sitosterol showed inhibition of the β-hematin formation. The docking results showed that hexacosanol, β-sitosterol and the analogues of β-sitosterol displayed binding energy ranging between -6.1 kcal/mol and -11.6 kcal/mol. Sitosterol glucoside has the highest docking score. Some of the ligands showed more binding affinity than known bioactive compounds used as reference. Analogues of β-sitosterol has been shown to be potential inhibitors of pfENR, therefore, the findings from this study suggest that sitosterol glucoside and ergosterol peroxide could act as antimalarial agents after further lead optimisation investigations.

Evaluation of Sensory Profile of Milk Analogs Containing Clove Oil: A Preliminary Study

  • Tae-Jin Kim;Kun-Ho Seo;Jung-Whan Chon;Hye-Young Youn;Hyeon-Jin Kim;Hajeong Jeong;Seok-Hyeong Kang;Won-Uk Hwang;Dongkwan Jeong;Kwang-Young Song
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.26-33
    • /
    • 2023
  • Eugenol, which can be extracted from clove oil, is a phenolic aromatic compound and has been found to have antibacterial, antiviral, antifungal, anticancer, anti-inflammatory, and antioxidant functions. Consequently, clove oil has long been used in several fields (food, medicine, skincare). Hence, in this study, the sensory profile of clove oil contained in milk analogs (almond, oat, and soy milks) was evaluated at different amounts (added at 0.25%-0.5% increments from 0% to 1.5%). Because of the strong scent of clove oil, the value of the evaluation for sensory profile determined in this study tended to be low. However, compared with the control group, good values in the evaluation for the sensory profile were found in all samples containing 0.25% of clove oil. We evaluated clove oil contained in milk analogs to help increase their sales through products with improved functionality.

Newly identified maltol derivatives in Korean Red Ginseng and their biological influence as antioxidant and anti-inflammatory agents

  • Jeong Hun Cho;Myoung Chong Song;Yonghee Lee;Seung-Taek Noh;Dae-Ok Kim;Chan-Su Rha
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.593-603
    • /
    • 2023
  • Background: Korean Red Ginseng is a major source of bioactive substances such as ginsenosides. Efficacy of red ginseng extract (RGE), which contains not only saponins but also various non-saponins, has long been studied. In the water-soluble component-rich fraction of RGE (WS), a byproduct generated in the process of extracting saponins from the RGE, we identified previously unidentified molecules and confirmed their efficacy. Methods: The RGE was prepared and used to produce WS, whose components were isolated sequentially according to their water affinity. The new compounds from WS were fractionized and structurally analyzed using nuclear magnetic resonance spectroscopy. Physiological applicability was evaluated by verifying the antioxidant and anti-inflammatory efficacies of these compounds in vitro. Results: High-performance liquid chromatography confirmed that the obtained WS comprised 11 phenolic acid and flavonoid substances. Among four major compounds from fractions 1-4 (F1-4) of WS, two compounds from F3 and F4 were newly identified in red ginseng. The analysis results show that these compound molecules are member of the maltol-structure-based glucopyranose series, and F1 and F4 are particularly effective for decreasing oxidative stress levels and inhibiting nitric oxide secretion, interleukin (IL)-1β and IL-6, and tumor necrosis factor-α. Conclusion: Our findings suggest that a few newly identified maltol derivatives, such as red ginseng-derived non-saponin in the WS, exhibit antioxidant and anti-inflammatory effects, making them viable candidates for application to pharmaceutical, cosmetic, and functional food materials.

Evaluation of Cell Based Anti-oxidation Assay of Functional Components Derived from Domestic Major Potato Varieties

  • Jung Hwan Nam;Su Young Hong;Su Jeong Kim;Hwang Bae Sohn;Yul Ho Kim;Kyung Tea Lee;Soo jin Park;Jae Kwon Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.75-75
    • /
    • 2020
  • Potatoes were first introduced outside the Andes region four centuries ago, and have become an integral part of much of the world's food. Potatoes were first introduced into Europe in the 16th century and Korea in the early 19th century. Potatoes have a short growing season, high production per unit area, relatively strong environmental adaptability, and are cultivated in more than 130 countries around the world. It is the world's fourth-largest crop, following rice, wheat, bean and maize. In the nutritional aspects, potatoes contain abundant vitamins and minerals, as well as an assortment of phytochemicals such as carotenoids and natural phenols. Due to the high content of potato functional compounds, it has known that potatoes are effective in the prevention of various human diseases. In particular, the potato contains a large amount of polar compounds, including the saponin in the polar compounds, and the physiological activity of the saponins, such as immunity enhancement, antioxidant and anti-inflammatory is known. In this study, the antioxidative activity of polar compounds from five potatoes was examined by cell based anti-oxidation assay. The smallest amount of ROS(Reactive oxygen species) was generated when the compound was derived from 'Haryung' and 'hongyoung' and strong SOD(Superoxide dismutase) activity was observed in 'Sumi' and 'Jayoung'. The results of this study reveal the antioxidative effect of polar compounds extracted from various kind of potatoes, which will enable the acquisition of new bioactive candidates and the establishment of new profit generation models for farmers

  • PDF