• 제목/요약/키워드: Bio-waste materials

검색결과 77건 처리시간 0.023초

Effects of organic fertilizers mixed with dehydrated food waste powder on agronomic performance of leafy vegetables

  • Jae-Han, Lee;You-Jin, Choi; Jin-Hyuk, Chun;Yun-Gu, Kang;Yeo-Uk, Yun;Taek-Keun, Oh
    • 농업과학연구
    • /
    • 제49권3호
    • /
    • pp.397-405
    • /
    • 2022
  • Castor oil cake is widely used as a raw material for organic fertilizers (OF) in Korea. Compared to other fertilizer raw materials, it is highly dependent on imports. In terms of replacing raw materials, dehydrated food waste powder (FDP) and castor oil cake have similar nutritional content, and if 30% is replaced, about 20% of the raw material cost can be saved. However, few studies on the effects on crop growth and soil properties when organic fertilizer and dry food waste powder are mixed and applied to the soil have been reported. The effects of an organic fertilizer made by mixing the commercial available organic fertilizer with dehydrated food waste (OF + FDP) on soil properties and the growth of two types of leafy vegetables (lettuce and young radish) were evaluated and compared with the performance of OF. The fresh weights of lettuce and young radish were the highest with OF amendment and stood at 114.3 and 119.0 g·plant-1, respectively. These were followed by OF + FDP amendment, which produced 103.1 and 109.6 g·plant-1, respectively. Compared to the control, OF and OF + FDP increased the lettuce fresh weights by about 69% and 52%, respectively, while the fresh weights of the radish were increased by about 223% and 207%, respectively. The soil pH, EC, total carbon content, and organic matter content in OF and OF + FDP increased. The mixture of dehydrated food waste powder and organic fertilizers is expected to improve soil quality and facilitate stable production of crops and contribute to the substitution of imported organic fertilizer raw materials.

Combustion and Mechanical Properties of Fire Retardant Treated Waste Paper-Waste Acrylic Raw Fiber Composite Board

  • Eom, Young Geun;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권3호
    • /
    • pp.1-10
    • /
    • 2003
  • Shredded waste newspapers, waste acrylic raw fibers, and urea-formaldehyde (UF) adhesives, at 10% by weight on raw material, were used to produce recycled waste paper-waste acrylic raw fiber composite boards in laboratory scale experiments. The physical and mechanical properties of fire retardant treated recycled waste paper-waste acrylic raw fiber composite boards were examined to investigate the possibility of using the composites as internal finishing materials with specific gravities of 0.8 and 1.0, containing 5, 10, 20, and 30(wt.%) of waste acrylic raw fiber and 10, 15, 20, and 25(wt.%) of fire retardant (inorganic chemical, FR-7®) using the fabricating method used by commercial fiberboard manufacturers. The bending modulus of rupture increased as board density increased, decreased as waste acrylic raw fiber content increased, and also decreased as the fire retardant content increased. Mechanical properties were a little inferior to medium density fiberboard (MDF) or hardboard (HB), but significantly superior to gypsum board (GB) and insulation board (IB). The incombustibility of the fire retardant treated composite board increased on increasing the fire retardant content. The study shows that there is a possibility that composites made of recycled waste paper and waste acrylic raw fiber can be use as fire retardant internal finishing materials.

Mechanical Properties of Corn Husk Flour/PP Bio-composites

  • Jagadeesh, Dani.;Sudhakara, P.;Lee, D.W.;Kim, H.S.;Kim, B.S.;Song, J.I.
    • Composites Research
    • /
    • 제26권4호
    • /
    • pp.213-217
    • /
    • 2013
  • The focus in the present work is to study the agro-waste corn husk bio-filler as reinforcement for polypropylene. These materials have been created by extrusion and injection molding. The effect of filler content by 10, 20, 30 and 40 wt. % and mesh sizes of 50~100, 100 and 300 on the mechanical properties was studied. For the un-notched specimens, the results of flexural strength showed a declining trend with increase the filler loading and the results of impact strength showed an increasing trend with increase the mesh size. In contrast, enhanced flexural modulus was observed with increasing filler loading and size.

Synthesis of Activated Carbon from a Bio Waste (Flower of Shorea Robusta) Using Different Activating Agents and Its Application as Supercapacitor Electrode

  • Ghosh, Souvik;Samanta, Prakas;Murmu, Naresh Chandra;Kim, Nam Hoon;Kuila, Tapas
    • Composites Research
    • /
    • 제35권1호
    • /
    • pp.1-7
    • /
    • 2022
  • The activated carbon is a very good choice for using as supercapacitor electrode materials. Herein, the flower of Shorea robusta, a bio-waste material was successfully used to synthesize the activated carbons for application as supercapacitor electrode materials. The activated carbon was synthesized through chemical activation process followed by thermal treatment at 700℃ in presence of N2 atmosphere using KOH, ZnCl2 and H3PO4 as the activating agents. The physicochemical analyses demonstrate that the obtained activated carbons are graphitic in nature and the degree of disorder of the graphitic carbons is changed with the activating agents. The activated carbon obtained from Shorea robusta flower (ACSF-K) electrode shows the specific capacitance of ~610 F g-1 at 2 A g-1 current density, which is higher than ACSF-Z (560 F g-1) and ACSF-H (470 F g-1) electrode material under the identical current density. The synthesized graphitic carbons also demonstrated good rate capability and high electrochemical stability as supercapacitor electrode.

Performance characteristics of a single-cylinder power tiller engine with biodiesel produced from mixed waste cooking oil

  • Choi, Hwon;Woo, Duk Gam;Kim, Tae Han
    • 농업과학연구
    • /
    • 제47권1호
    • /
    • pp.29-41
    • /
    • 2020
  • Biodiesel is a clean energy resource that can replace diesel as fuel, which can be used without any structural changes to the engine. Vegetable oil accounts for 95 percent of the raw materials used to produce biodiesel. Thus, many problems can arise, such as rising prices of food resources and an imbalance between supply and demand. Most of the previous studies using waste cooking oil used waste cooking oil from a single material. However, the waste cooking oil that is actually collected is a mixture of various types of waste cooking oil. Therefore, in this study, biodiesel produced with mixed waste cooking oil was supplied to an agricultural single-cylinder diesel engine to assess its potential as an alternative fuel. Based on the results, the brake specific fuel consumption (BSFC) increased compared to diesel, and the axis power decreased to between 70 and 99% compared to the diesel. For emissions, NOx and CO2 were increased, but CO and HC were decreased by up to 1 to 7% and 16 to 48%, respectively, compared to diesel. The emission characteristics of the mixed waste cooking oil biodiesel used in this study were shown to be similar to those of conventional vegetable biodiesel, confirming its potential as a fuel for mixed waste cooking oil biodiesel.

INORGANIC AND BIO-MATERIALS IN THE REMOVAL/SPECIATION OF RADIOCESIUM AND RADIOSTRONTIUM : AN OVERVIEW

  • Tiwari, Diwakar;Prasad, S.K.;Yang, Jae-Kyu;Choi, Bong-Jong;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • 제11권2호
    • /
    • pp.106-125
    • /
    • 2006
  • Cesium and strontium are two important fission products and the removal/speciation of these two cations with several inorganic/bio-materials is an interesting topic to discuss. It is to be noted that inorganic materials are found to be fairly effective and efficient in the removal/speciation of these cations. Moreover, these solids are to be found promising as they show fairly good radiation and temperature stability. Hence, they play an important role in the radioactive waste management studies. However, various studies reveal that in addition to inorganic materials various biosorbents can also be employed in the removal/speciation of these ions. But the radiation and temperature stability of these bio-sorbents and dead biomasses are still the topic lying among the researchers to be investigated.

Sales Energy Promotion Efficiency and Policy Utilization Plan for Energy Facilities

  • KWON, Lee-Seung;LEE, Woo-Sik;KWON, Woo-Taeg
    • 유통과학연구
    • /
    • 제18권9호
    • /
    • pp.67-75
    • /
    • 2020
  • Purpose: The purpose of this study is to enhance sales promotion efficiency for using solid refuse fuel facilities. Renewable energy technology using Solid Refuse Fuel (SRF) is an economic efficiency technology that recovers waste by burning various wastes. A survey on the pollutants discharged from the solid fuels facilities was investigated so that the SRF facilities could be expanded, distributed and reflected in the policy. Research design, data, and methodology: In this study, 9 business sites using SRF and Bio-SRF as main raw materials were investigated for 2 years. The characteristics of target business sites such as the type of fuel used, combustion method, combustion temperature, daily fuel consumption and environmental prevention facilities were studied. Results: The average pollution & ammonia concentration of Bio-SRF facilities was found to be 88.15% higher than that of SRF facilities. But the average acetaldehyde concentration of SRF facilities was found to be 88.15% higher than that of Bio-SRF facilities. Conclusions: The main issue is how much electric power generation using combustible materials affects air pollution. The waste recycling law provides the standard value according to the fuel property, but there is a considerable gap with the mixed fuel. Therefore, for efficient utilization of facilities using solid fuel products, additional research is needed to improve the distribution structure of exhaust pollutants is needed.

고지섬유의 효율적 이용을 위한 Multifractor의 활용분석 (I) - Slot screen을 사용하는 경우 - (Use of Multifractors in Paper Mills for Recycled Fibers (I) - Slot screen cases -)

  • 서영범;이민우;김영욱
    • 펄프종이기술
    • /
    • 제42권1호
    • /
    • pp.13-19
    • /
    • 2010
  • Four waste paper mills in Korea, where multifractors, devices for fiber fractionation, were installed, were selected to investigate how effectively and how differently the multifractors were used. They all used slot-type screens. Effective fiber fractionations by fiber length were expected by the multifractors, but in reality, they were used for selecting fiber furnishes that were flexible and hydrated. Flakes, which meant large fiber bundles, were rejected effectively by the multifractors. There existed a high regression coefficient between the fiber length differences and the freeness differences of the accepted and the rejected fiber furnishes.

Production of Polyhydroxybutyrate from Crude Glycerol and Spent Coffee Grounds Extract by Bacillus cereus Isolated from Sewage Treatment Plant

  • Lee, Gi Na;Choi, So Young;Na, Jonguk;Youn, HaJin;Jang, Yu-Sin
    • KSBB Journal
    • /
    • 제29권6호
    • /
    • pp.399-404
    • /
    • 2014
  • Production of biodegradable polymer polyhydroxyalkanoates (PHAs) from industrial wastes exhibits several advantages such as recycle of waste and the production of high valuable products. To this end, this study aimed at isolating from the sewage treatment plant a PHA producing bacterium capable of utilizing wastes generated from biodiesel and food industries. A Bacillus cereus strain capable of producing poly(3-hydroxybutyrate) [P(3HB)] was isolated, which was followed by confirmation of P(3HB) accumulation by gas-chromatographic analyses. Then, the effects of nutrient limitation on P(3HB) production by B. cereus was first examined. Cells cultured in a minimal medium under the limitation of nitrogen, potassium and sulfur suggested that nitrogen limitation allows the highest P(3HB) accumulation. Next, production of P(3HB) was examined from both waste of biodiesel production (crude glycerol) and waste from food industry (spent coffee grounds). Cells cultured in nitrogen-limited minimal medium supplemented crude glycerol and waste spent coffee grounds extract accumulated P(3HB) to the contents of 2.4% and 1.0% of DCW. This is the first report demonstrating the capability of B. cereus to produce P(3HB) from waste raw materials such as crude glycerol and spent coffee grounds.