• Title/Summary/Keyword: Bio-optical correction

Search Result 8, Processing Time 0.022 seconds

Prelaunch Study of Validation for the Geostationary Ocean Color Imager (GOCI) (정지궤도 해색탑재체(GOCI) 자료 검정을 위한 사전연구)

  • Ryu, Joo-Hyung;Moon, Jeong-Eon;Son, Young-Baek;Cho, Seong-Ick;Min, Jee-Eun;Yang, Chan-Su;Ahn, Yu-Hwan;Shim, Jae-Seol
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.251-262
    • /
    • 2010
  • In order to provide quantitative control of the standard products of Geostationary Ocean Color Imager (GOCI), on-board radiometric correction, atmospheric correction, and bio-optical algorithm are obtained continuously by comprehensive and consistent calibration and validation procedures. The calibration/validation for radiometric, atmospheric, and bio-optical data of GOCI uses temperature, salinity, ocean optics, fluorescence, and turbidity data sets from buoy and platform systems, and periodic oceanic environmental data. For calibration and validation of GOCI, we compared radiometric data between in-situ measurement and HyperSAS data installed in the Ieodo ocean research station, and between HyperSAS and SeaWiFS radiance. HyperSAS data were slightly different in in-situ radiance and irradiance, but they did not have spectral shift in absorption bands. Although all radiance bands measured between HyperSAS and SeaWiFS had an average 25% error, the 11% absolute error was relatively lower when atmospheric correction bands were omitted. This error is related to the SeaWiFS standard atmospheric correction process. We have to consider and improve this error rate for calibration and validation of GOCI. A reference target site around Dokdo Island was used for studying calibration and validation of GOCI. In-situ ocean- and bio-optical data were collected during August and October, 2009. Reflectance spectra around Dokdo Island showed optical characteristic of Case-1 Water. Absorption spectra of chlorophyll, suspended matter, and dissolved organic matter also showed their spectral characteristics. MODIS Aqua-derived chlorophyll-a concentration was well correlated with in-situ fluorometer value, which installed in Dokdo buoy. As we strive to solv the problems of radiometric, atmospheric, and bio-optical correction, it is important to be able to progress and improve the future quality of calibration and validation of GOCI.

Feasibility Study for an Optical Sensing System for Hardy Kiwi (Actinidia arguta) Sugar Content Estimation

  • Lee, Sangyoon;Sarkar, Shagor;Park, Youngki;Yang, Jaekyeong;Kweon, Giyoung
    • Journal of agriculture & life science
    • /
    • v.53 no.3
    • /
    • pp.147-157
    • /
    • 2019
  • In this study, we tried to find out the most appropriate pre-processing method and to verify the feasibility of developing a low-price sensing system for predicting the hardy kiwis sugar content based on VNIRS and subsequent spectral analysis. A total of 495 hardy kiwi samples were collected from three farms in Muju, Jeollabukdo, South Korea. The samples were scanned with a spectrophotometer in the range of 730-2300 nm with 1 nm spectral sampling interval. The measured data were arbitrarily separated into calibration and validation data for sugar content prediction. Partial least squares (PLS) regression was performed using various combinations of pre-processing methods. When the latent variable (LV) was 8 with the pre-processing combination of standard normal variate (SNV) and orthogonal signal correction (OSC), the highest R2 values of calibration and validation were 0.78 and 0.84, respectively. The possibility of predicting the sugar content of hardy kiwi was also examined at spectral sampling intervals of 6 and 10 nm in the narrower spectral range from 730 nm to 1200 nm for a low-price optical sensing system. The prediction performance had promising results with R2 values of 0.84 and 0.80 for 6 and 10 nm, respectively. Future studies will aim to develop a low-price optical sensing system with a combination of optical components such as photodiodes, light-emitting diodes (LEDs) and/or lamps, and to locate a more reliable prediction model by including meteorological data, soil data, and different varieties of hardy kiwi plants.

Signl processing method and diagnostic algorithm for arterial oxygen-saturation measument (산소포화도 측정을 위한 신호처리방법 및 계산 알고리즘)

  • 김수진;황돈연;전계진;이종연;정성규;윤길원
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.452-456
    • /
    • 2000
  • A measurement unit and signal processing algorithm have been developed for predicting arterial oxygen saturation noninvasively. The measurement set-up was composed of a probe including light source and photodetector, optical signal processing section, LED driving circuit, PC interface software for data acquisition and data processing software. Light from the LED's was irradiated onto the finger nail bed and transmitted light was measured at different wavelengths. An effective baseline correction method was developed and measured data were analyzed by using various data processing methods and prediction algOlithms. For performance evaluation, a pulse oximeter simulator (Bio- Tek Instrument Inc.) was used as reference. The best performance in terms of the correlation coefficient and the standard deviation was obtained under the following conditions; when the arterial signals were computed in terms of area rather than peak-valley difference, and when the algorithm calculating by $In(I_p/I_v)/I_{avr}$ value for pulsation waveform was used. In in vivo test, prediction was improved when the developed baseline correction method was used. In addition, wavelengths of 660 nm and 940 nm provided better linearity and precision than wavelengths of 660 nm and 805 nm. 05 nm.

  • PDF

Comparison of Bio-Optical Properties of the Yellow Sea and the East Sea using SeaWiFS Data (SeaWiFS 자료를 이용한 황해와 동해의 생물광학 특성 비교)

  • Jeong, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.2
    • /
    • pp.38-45
    • /
    • 2001
  • Three lines from $36_{\circ}$ N, $124_{\circ}$ E, and $132_{\circ}$ E of the East Sea and the Yellow Sea were chosen to extract spectra of normalized water leaving radiances. Comparative analysis of the OCTS algorithm and SeaWiFS(OC-2) algorithms was presented here. OCTS algorithm have more overestimate than SeaWiFS(OC-2 algorithm) for detecting chlorophyll concentration. Atmospheric correction algorithm that is excluded the effect of SS in the case 2 water need for long term ocean environmental monitoring of the East Sea and the Yellow Sea. And, considered the effect of CDOM and SS, bio-optical algorithm have to be developed in this research.

  • PDF

Accuracy of the Point-Based Image Registration Method in Integrating Radiographic and Optical Scan Images: A Pilot Study

  • Mai, Hai Yen;Lee, Du-Hyeong
    • Journal of Korean Dental Science
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the influence of different implant computer software on the accuracy of image registration between radiographic and optical scan data. Materials and Methods: Cone-beam computed tomography and optical scan data of a partially edentulous jaw were collected and transferred to three different computer softwares: Blue Sky Plan (Blue Sky Bio), Implant Studio (3M Shape), and Geomagic DesignX (3D systems). In each software, the two image sets were aligned using a point-based automatic image registration algorithm. Image matching error was evaluated by measuring the linear discrepancies between the two images at the anterior and posterior area in the direction of the x-, y-, and z-axes. Kruskal-Wallis test and a post hoc Mann-Whitney U-test with Bonferroni correction were used for statistical analyses. The significance level was set at 0.05. Result: Overall discrepancy values ranged from 0.08 to 0.30 ㎛. The image registration accuracy among the software was significantly different in the x- and z-axes (P=0.009 and <0.001, respectively), but not different in the y-axis (P=0.064). Conclusion: The image registration accuracy performed by a point-based automatic image matching could be different depending on the computer software used.

Development of Correction Technologies for Quantification of Photon Measurement in Bio-Luminescence Image (생체발광영상에서 포톤 검출 정량화를 위한 보정기법의 개발)

  • Tak, Yoon-Oh;Kim, Hyeon-Sik;Park, Hyeong-Ju;Choi, Heung-Kook;Choi, Eun-Seo;Hann, S.-Wook;Lee, Byeong-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.85-92
    • /
    • 2011
  • Bioluminescence imaging (BLI) is the most sensitive animal imaging technique for molecular imaging research. Generally, highly sensitive CCD is used to detect an optical probe introduced in a living mouse. However, in many cases, the light signal emitted from a probe is too small to detect because it is scattered and attenuated by the tissue prior to being detected. The problem is that scattering and attenuation not only inhibit accurate measurement but also make image quality down. Thus we introduced a new method to reduce noise by using property of CCD and method to improve image quality of bioluminescence image by using two steps Gaussian blurring.

Application and Analysis of Ocean Remote-Sensing Reflectance Quality Assurance Algorithm for GOCI-II (천리안해양위성 2호(GOCI-II) 원격반사도 품질 검증 시스템 적용 및 결과)

  • Sujung Bae;Eunkyung Lee;Jianwei Wei;Kyeong-sang Lee;Minsang Kim;Jong-kuk Choi;Jae Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1565-1576
    • /
    • 2023
  • An atmospheric correction algorithm based on the radiative transfer model is required to obtain remote-sensing reflectance (Rrs) from the Geostationary Ocean Color Imager-II (GOCI-II) observed at the top-of-atmosphere. This Rrs derived from the atmospheric correction is utilized to estimate various marine environmental parameters such as chlorophyll-a concentration, total suspended materials concentration, and absorption of dissolved organic matter. Therefore, an atmospheric correction is a fundamental algorithm as it significantly impacts the reliability of all other color products. However, in clear waters, for example, atmospheric path radiance exceeds more than ten times higher than the water-leaving radiance in the blue wavelengths. This implies atmospheric correction is a highly error-sensitive process with a 1% error in estimating atmospheric radiance in the atmospheric correction process can cause more than 10% errors. Therefore, the quality assessment of Rrs after the atmospheric correction is essential for ensuring reliable ocean environment analysis using ocean color satellite data. In this study, a Quality Assurance (QA) algorithm based on in-situ Rrs data, which has been archived into a database using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-optical Archive and Storage System (SeaBASS), was applied and modified to consider the different spectral characteristics of GOCI-II. This method is officially employed in the National Oceanic and Atmospheric Administration (NOAA)'s ocean color satellite data processing system. It provides quality analysis scores for Rrs ranging from 0 to 1 and classifies the water types into 23 categories. When the QA algorithm is applied to the initial phase of GOCI-II data with less calibration, it shows the highest frequency at a relatively low score of 0.625. However, when the algorithm is applied to the improved GOCI-II atmospheric correction results with updated calibrations, it shows the highest frequency at a higher score of 0.875 compared to the previous results. The water types analysis using the QA algorithm indicated that parts of the East Sea, South Sea, and the Northwest Pacific Ocean are primarily characterized as relatively clear case-I waters, while the coastal areas of the Yellow Sea and the East China Sea are mainly classified as highly turbid case-II waters. We expect that the QA algorithm will support GOCI-II users in terms of not only statistically identifying Rrs resulted with significant errors but also more reliable calibration with quality assured data. The algorithm will be included in the level-2 flag data provided with GOCI-II atmospheric correction.

Satellite-detected red tide algal blooms in Korean and neighboring waters during 1999-2004

  • Ahn Yu-Hwan;Shanmugam Palanisamy
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.95-100
    • /
    • 2006
  • Measurements of ocean color from space since 1970s provided vital information with reference to physical and biogeochemical properties of the oceanic waters. The utility of these data has been explored in order to map and monitor highly toxic/or harmful algal blooms (HABs) that affected most of coastal waters throughout the world due to accelerated eutrophication from human activities and certain oceanic processes. However, the global atmospheric correction and bio-optical algorithms developed for oceanic waters were found to yield false information about the HABs in coastal waters. The present study aimed to evaluate the potential use of red tide index (RI) method, which has been developed by Ahn and Shanmugam (2005), for mapping of HABs in Korean and neighboring waters. Here we employed the SSMM to remove the atmospheric effect in the SeaWiFS image data and the achieved indices by RI method were found more appropriate in correctly identifying potential areas of the encountered HABs in Korean South Sea (KSS) and Chinese coastal waters during 1999-2004. But the existence of high absorbing and scattering materials greatly interfered with the standard OC4 algorithm which falsely identified red tides in these waters. In comparison with other methods, the RI approach for the early detection of HABs can provide state managers with accurate identification of the extent and location of these blooms as a management tool.

  • PDF