• 제목/요약/키워드: Bio-inspired Design

검색결과 40건 처리시간 0.023초

Repeated impact response of bio-inspired sandwich beam with arched and honeycomb bilayer core

  • Ahmad B.H. Kueh;Juin-Hwee Tan;Shukur Abu Hassan;Mat Uzir Wahit
    • Structural Engineering and Mechanics
    • /
    • 제85권6호
    • /
    • pp.755-764
    • /
    • 2023
  • The article examines the impact response of the sandwich beam furnished by a novel bilayer core as inspired by the woodpecker's head architecture under different repeatedly exerted low-velocity impact loadings by employing the finite element package, ABAQUS. The sandwich beam forms four essential parts comprising bottom and top carbon fiber reinforced polymer laminates encasing bilayer core made of laterally arched solid hot melt adhesive material and aluminum honeycomb. Impact loadings are implemented repeatedly with a steel hemisphere impactor for various impact energies, 7.28 J, 9.74 J, and 12.63 J. Essentially, the commonly concentrated stresses at the impact region are regulated away by the arched core in all considered cases thus reducing the threat of failure. The sandwich beam can resist up to 5 continual impacts at 7.28 J and 9.74 J but only up to 3 times repeated loads at 12.63 J before visible failure is noticed. In the examination of several key impact performance indicators under numerous loading cases, the proposed beam demonstrates favorably up to 1.3-11.2 higher impact resistance efficacies compared to existing designs, therefore displaying an improvement in repeated impact resistance of the new design.

A Bio-Inspired Cell-Microsystem to Manipulate and Detect Living Cells

  • Lim, Jung-Min;Byun, Sang-Won;Park, Tai-Hyun;Seo, Jong-Mo;Yoo, Young-Suk;Hum Chung;Dong-il
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권4호
    • /
    • pp.160-164
    • /
    • 2004
  • In this study, we demonstrate for the first time a bio-inspired Cell-Microsystem to manipulate and detect living cells. Cultured retinal pigment epithelial cell line (ARPE-19) was directed to grow in a pre-defined Cell-Microsystem. The three-dimensional micropillars of 5 ${\mu}{\textrm}{m}$ in height and diameter of the Cell-Microsystem were fabricated. Inhibited DNA synthesis and transformed cell morphology were observed throughout the culture period. The demonstration of manipulating and detecting living cells by the surface topography is a new approach, and it will be very useful for the future design of cell-based biosensors and bioactuators.

Smart body armor inspired by flow in bone

  • Tate, Melissa Louise Knothe
    • Smart Structures and Systems
    • /
    • 제7권3호
    • /
    • pp.223-228
    • /
    • 2011
  • An understanding of biomaterials' smart properties and how biocomposite materials are manufactured by cells provides not only bio-inspiration for new classes of smart actuators and sensors but also foundational technology for smart materials and their manufacture. In this case study, I examine the unique smart properties of bone, which are evident at multiple length scales and how they provide inspiration for novel classes of mechanoactive materials. I then review potential approaches to engineer and manufacture bioinspired smart materials that can be applied to solve currently intractable problems such as the need for "smart" body armor or decor cum personal safety devices.

Bio-inspired self powered nervous system for civil structures

  • Shoureshi, Rahmat A.;Lim, Sun W.
    • Smart Structures and Systems
    • /
    • 제5권2호
    • /
    • pp.139-152
    • /
    • 2009
  • Globally, civil infrastructures are deteriorating at an alarming rate caused by overuse, overloading, aging, damage or failure due to natural or man-made hazards. With such a vast network of deteriorating infrastructure, there is a growing interest in continuous monitoring technologies. In order to provide a true distributed sensor and control system for civil structures, we are developing a Structural Nervous System that mimics key attributes of a human nervous system. This nervous system is made up of building blocks that are designed based on mechanoreceptors as a fundamentally new approach for the development of a structural health monitoring and diagnostic system that utilizes the recently developed piezo-fibers capable of sensing and actuation. In particular, our research has been focused on producing a sensory nervous system for civil structures by using piezo-fibers as sensory receptors, nerve fibers, neuronal pools, and spinocervical tract to the nodal and central processing units. This paper presents up to date results of our research, including the design and analysis of the structural nervous system.

생태계 모방 임베디드 미들웨어의 설계 및 구현 (Design and Implementation of Bio Inspired Embedded Middleware)

  • 최현식;한성민;윤현준;박성용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 추계학술발표대회
    • /
    • pp.759-762
    • /
    • 2007
  • 본 논문에서는 미래의 네트워크 모델에 적합하도록 설계한 생태계 모방 임베디드 미들웨어(BIEM : Bio Inspired Embedded Middleware)를 구현하고, 그의 구조와 특성을 기술하며, 성능을 평가하여 BIEM의 정확성을 검증한다. BIEM의 정확성을 검증하기 위해, BIEM 위에서 응용프로그램을 실행시켰을 때와 독립적으로 일반적인 해를 구했을 때의 결과를 비교한다. 또한 서비스 제공을 위해 요구되는 통신오버헤드를 측정하여, 오버헤드가 네트워크 트래픽에 얼마나 영향을 미칠지에 대해서 알아보고, 마지막으로는 이주서비스에 소요되는 시간을 비교 및 분석한다. 이를 통해, BIEM이 미래 네트워크에 이용될 수 있는 하나의 시스템임을 결론지을 수 있다.

전기물고기의 방해 회피 반응 모델링과 응용 (Modeling Jamming Avoidance Response of Pulse-type Weakly Electric Fish)

  • 소재현;김대은
    • 제어로봇시스템학회논문지
    • /
    • 제21권10호
    • /
    • pp.924-929
    • /
    • 2015
  • In this paper, we suggest a phase difference algorithm inspired by weakly electric fish. Weakly electric fish is a fish which generates electric field though its electric organ in the tail. The weakly electric fish search for prey and detect an object by using electrolocation. The weakly electric fish have Jamming Avoidance Response (JAR) to avoid jamming signal. One of pulse-type weakly electric fish Gymnotus carapo also have JAR to reduce the probability of coincidence of pulses. We analyze this response signal and design the phase difference algorithm. We expect that simple algorithm inspired by weakly electric fish can be used in many engineering fields.

전개형 생체모방로봇을 위한 안전한 자율주행시스템 설계 (Design of Safe Autonomous Navigation System for Deployable Bio-inspired Robot)

  • 최근하;한상권;이진이;이진우;안정도;김경수;김수현
    • 제어로봇시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.456-462
    • /
    • 2014
  • In this paper, we present a deployable bio-inspired robot called the Pillbot-light, which utilizes a safe autonomous navigation system. The Pillbot-light is mounted the station robot, and can be operated in a disaster relief operation or military operation. However, the Pilbot-light has a challenge to navigate autonomously because the Pilbot-light cannot be equipped with various sensors. As a result, we propose a new robot system for autonomous navigation that the station robot controls Pillbot-light equipped with vision camera and CPU of high performance. This system detects obstacles based on the edge extraction using vision camera. Also, it cannot only achieve path planning using the hazard cost function, but also localization using the Particle Filter. And this system is verified by simulation and experiment.

Aeroelastic-aerodynamic analysis and bio-inspired flow sensor design for boundary layer velocity profiles of wind turbine blades with active external flaps

  • Sun, Xiao;Tao, Junliang;Li, Jiale;Dai, Qingli;Yu, Xiong
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.311-328
    • /
    • 2017
  • The characteristics of boundary layers have significant effects on the aerodynamic forces and vibration of the wind turbine blade. The incorporation of active trailing edge flaps (ATEF) into wind turbine blades has been proven as an effective control approach for alleviation of load and vibration. This paper is aimed at investigating the effects of external trailing edge flaps on the flow pattern and velocity distribution within a boundary layer of a NREL 5MW reference wind turbine, as well as designing a new type of velocity sensors for future validation measurements. An aeroelastic-aerodynamic simulation with FAST-AeroDyn code was conducted on the entire wind turbine structure and the modifications were made on turbine blade sections with ATEF. The results of aeroelastic-aerodynamic simulations were combined with the results of two-dimensional computational fluid dynamic simulations. From these, the velocity profile of the boundary layer as well as the thickness variation with time under the influence of a simplified load case was calculated for four different blade-flap combinations (without flap, with $-5^{\circ}$, $0^{\circ}$, and $+5^{\circ}$ flap). In conjunction with the computational modeling of the characteristics of boundary layers, a bio-inspired hair flow sensor was designed for sensing the boundary flow field surrounding the turbine blades, which ultimately aims to provide real time data to design the control scheme of the flap structure. The sensor element design and performance were analyzed using both theoretical model and finite element method. A prototype sensor element with desired bio-mimicry responses was fabricated and validated, which will be further refined for integration with the turbine blade structures.

광학 센서 응용을 위한 모르포 나비 날개 모방 구조 설계 (Design of Bio-Inspired Morpho Butterfly Structures for Optical Sensor Applications)

  • 김현명;이길주;김민석;김규정;송영민
    • 한국정밀공학회지
    • /
    • 제33권5호
    • /
    • pp.357-362
    • /
    • 2016
  • Various species of insects display vivid colors, widely known as 'structural color' due to their optical interference. Morpho butterflies are famous for their brilliant iridescent colors, which arise from the photonic-nanostructures of optical interference on their wings. In this paper, we outline the results of a comparative study of the optical properties of bio-inspired Morpho butterfly structures with the widely known Distributed Bragg Reflector (DBR), conducted using a rigorous coupled-wave analysis (RCWA) method for the two structures. Almost analogous tendencies were observed for both Morpho and DBR structures. With variation in the surrounding media, however, Morpho structures showed an obvious peak shift while no significant changes were observed in DBR, which can be applicable.