• Title/Summary/Keyword: Bio-concentration

Search Result 2,030, Processing Time 0.029 seconds

Physical properties, released patterns and bio-efficacy of granular mixtures with chlomethoxyfen and butachlor formulated by different methods (제조방식을 달리한 chlomethoxyfen과 butachlor 혼합입제의 물리성, 수중용출도와 생물효과 비교)

  • Chung, Bong-Jin;Yeon, Jae-Heum
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.36-44
    • /
    • 1998
  • To develope cost-effective new granular formulation of mixture with 7.0% chlomethoxyfen and 3.5% butachlor, this study was conducted by investigation of floatability, dispersibility or collapsability and released concentration of active ingredients in water and bio-efficacies of the granules formulated by different formulation methods compared to commercial pellet-extruded granules. They were formulated by coating on or impregnation into extruded pellets, sands and zeolites with two active ingredients, binders, friction reducer, dispersing agents and bentonite. Pellet-coated method showed similar floatability, collapsability and bio-efficacy to the commercial pellet-extruded one or better than that but unstable patterns of released concentration of chlomethoxyfen because of easy isolation of coated technical particles from the surface of granules. Sand-coated methods showed similar physical properties, released pattern of two active ingredients, and bio-efficacy to the commercial one. Liquid binders and/or dispersing agents are more important than powdered ones to control released concentration of active ingredients from the granule mixtures, to improve the floatability and dispersibility, and to show good bio-efficacy. Sand-coated one might be a suitable method if types and amount of liquid binders and dispersing agents are selected.

  • PDF

Synthesis of Vegetable-based Alkanol Amides for Improving Lubricating Properties of Diesel Fuel (경유의 윤활 성능 향상을 위한 식물유 기반 알칸올 아마이드의 합성)

  • Yuk, Jung-Suk;Kim, Young-Wun;Yoo, Seung-Hyun;Chung, Keun-Wo;Kim, Nam-Kyun;Lim, Dae-Jae
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.421-427
    • /
    • 2012
  • To improve the lubricity of ultra low sulfur diesel, vegetable oil-based alkanol amide derivatives were prepared and their lubricity properties were studied. To synthesize the alkanol amides, we conducted the amidation reaction of diethaolamine High Frequency Reciprocating Rig (HFRR) and the fatty acid methyl esters, obtained by the continuous transesterification of methanol and several vegetable oil, such as soybean oil, palm oil and coconut oil. The synthesized amides were soluble in ultra low sulfur diesel in the concentration range of ca. 1 wt%; the lubricating properties of ultra low sulfur diesel containing 120 ppm of amides were measured using an HFRR method. It was found that the wear scar diameter in the pure ultra low sulfur diesel decreased significantly from 581 ${\mu}m$ to 305~323 ${\mu}m$ upon the addition of the amides, indicating that lubricating properties of the diesel were improved. On the other hand, the types of vegetable oils did not affect the wear scar diameters, implying that lubricating properties of the diesel did not depend strongly on the structures of alkyl groups of alkanol amide derivatives. When we measured the lubricating properties of the one type of diesels containing various amounts of alkanol amide, we observed that the wear scar diameter decreased drastically with increasing the amide concentration, meaning that the lubricity improved with the amide concentration.

A New Selection System for Pepper Regeneration by Mannose

  • Kim, Joo-Yean;Min Jung;Kim, Hyo-Soon;Lee, Yun-Hee;Park, Soon-Ho;Lim, Yong-Pyo;Min, Byung-Whan;Yang, Seung-Gyun;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.129-134
    • /
    • 2002
  • We report the development of a new selection system for the transformation of pepper plants by mannose. In order to achieve this, we first tested several factors related to regeneration conditions. Among the 30 inbred lines examined, line P9l5 was able to generate shoots at the highest rate from both cotyledons and hyporotyls in MS media. A dosage curve for optimizing the selection conditions was established by mixing mannose (range 0-50 g/L) and sucrose (range 0-30 g/L). The least selection pressure on shoot formation was created by a mixture of sucrose and mannose at 20 g/L and 15 g/L, respectively, and the threshold for ultimate tissue death was 50 g/L of mannose irrespective of the sucrose concentration. However, we found that mannose itself was not the sole inhibitor of pepper shoot development. High concentrations of sucrose (30 g/L) contributed additively to the inhibition of shoot formation at higher mannose concentrations. Genotype preference is a major factor that enhances regeneration ability in mannose media, as was observed in MS media. P9l5 and P410 line had high regeneration rates under mannose selection conditions in the presence of Agrobacterium infection. Different virulence levels of Agrobacterium strains did change the regeneration rates, probably due to interaction with the specificities of the inbred lines. Taken together, P9l5 offers the best pepper inbred line for transformation and we recommend a selection condition of 20 g/L of sucrose and 15 g/L or more of mannose up to 50 g/L in media.

Effect and Nutrient Content of Fermented Aloe Saponaria as Pigs Feed Additive Food

  • Choi, Sun Mi;Supeno, Destiani;Kwon, Soon Hong;Chung, Sung Won;Kwon, Soon Goo;Park, Jong Min;Kim, Jong Soon;Choi, Won Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • Aloe gel layer is well known as raw materials of medicines and cosmetics due to their antioxidant and anti-inflammatory properties. In aloe gel extracting process, the outer part of the leaf was removed. It contains high quality of fiber and many nutrients. However, this part is thrown away and generally used as fertilizer. The purpose of this research was to examine the important nutrient of Aloe saponaria. Moreover, the feasibility of using aloe as a dietary supplement by feeding fermentation treatment of aloe was investigated. To do this, the aloe leaf was divided into several parts including leaf skin, bottom of the leaf, tip of the leaf, middle of the leaf, and leaf flesh. Then the saponin content were analyzed from each part. The extraction method was used to clarify the saponin content. The aloe then fermented to improve it benefit. The fermented Aloe then given as dietary food to group of pig. Finally, the appropriate feed level was determined and the pork meat quality was analyzed. The extraction of saponin shows that the highest concentration of saponin located on the skin of the leaf. The feeding experiment shows that there is no significant difference in pig growth without aloe dietary food and groups with aloe as dietary food. It was conclude that fermented aloe can replace the pigs normal feeder as an alternative feeding solution.

A Cytotoxicity of Carrier Oil and Essential Oils on Cells by Using of Aromatherapy (향기요법에 사용하는 캐리어 오일과 에션셜 오일의 세포에 대한 독성)

  • Yu, Byong-Soo;Kim, Sha-Sha;Yun, Young-Han;Kim, Ki-Young
    • Korean Journal of Human Ecology
    • /
    • v.17 no.5
    • /
    • pp.1027-1035
    • /
    • 2008
  • Essentail oils and carrier oils are generally used for Aromatherapy. Therefore the toxicity, possibilities of irritations and sensitive reactions and injury of essential oils must be considered for clients and therapists. So that, in this studies a toxicity of jojoba and 4 species essential oils (fennel, mandarine, tea tree and cedarwood) were investigated by the measurement of MTT-assay and sirius red staining. Liver, kidney and brain tell were chosen for the cell viability assay and observation of morphological change. In the result, no cytotoxicity was observed on live., kidney and brain cell at concentration of 0.01 $\mu\el/m\el$ jojoba oil. And lysis and nucleus breaking were not observed at same concentration of jojoba oil on live., kidney and brain cell. fennel oil was showed 50% of cell viability and inhibited cell growth on liver, kidney and brain cell at relatively high concentration compared with the other oils. 50% of liver, kidney and brain cell viability and delayed cell growth of tea tree and mandarine oil were revealed at lower concentration than fennel oil. In cedarwood oil, 50% of liver cell viability at concentration of 0.00067 $\mu\el/m\el$ was showed, but cell viability and cell growth of kidney and beam cell were effected at the lowest concentration compared with other oils. So that, jojoba oil as using of carrier oil may be not harmful. And 3 essential oils from the fennel, tea tree and mamdarine may have very low toxicity, but cedarwood may be used carefully for inhalation. And over dosage of concentrated cedarwood oil should be not directly touched and exposured, and absolute essential oils must be diluted with carrier oils for topical and systematic massage.

Nitrogen and Phosphorus Removal in Membrane Bio-Reactor (MBR) Using Simultaneous Nitrification and Denitrification (SND) (동시 질산화-탈질(SND) 반응을 적용한 MBR 반응조에서 질소 및 인 제거 특성)

  • Tian, Dong-Jie;Lim, Hyun-Suk;An, Chan-Hyun;Lee, Bong-Gyu;Jun, Hang-Bae;Park, Chan-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.724-729
    • /
    • 2013
  • Simultaneous nitrification and denitrification (SND) occurs concurrently in the same reactor under micro dissolved oxygen (DO) conditions. Anaerobic zone was applied for phosphorus release prior to an aerated membrane bio-reactor (MBR), and anoxic zone was installed by placing a baffle in the MBR for enhancing denitrification even in high DO concentration in the MBR. Phosphorus removal was tested by alum coagulation in the anaerobic reactor preceding to MBR. DO concentration were 2.0, 1.5, 1.0, 0.75 mg/L in the MBR at different operating stages for finding optimum DO concentration in MBR for nitrogen removal by SND. pH was maintained at 7.0~8.0 without addition of alkaline solution even with alum addition due to high alkalinity in the raw sewage. Both TCODcr and $NH_4^+$-N removal efficiency were over 90% at all DO concentration. TN removal efficiencies were 50, 51, 54, 66% at DO concentration of 2.0, 1.5, 1.0, 0.75 mg/L, respectively. At DO concentration of 0.75 mg/L with addition of alum, TN removal efficiency decreased to 54%. TP removal efficiency increased from 29% to 95% by adding alum to anaerobic reactor. The period of chemical backwashing of the membrane module increased from 15~20 days to 40~50 days after addition of alum.

Effect of Liquid Pig Manure Application on Soil Chemical Properties in Rice-Chinese Milkvetch Crop Rotation (벼-자운영 윤작재배에서 돈분액비 시용이 토양화학성에 미치는 영향)

  • Kang, Se-Won;Seo, Dong-Cheol;Seo, Young-Jin;Lee, Sang-Gyu;Choi, Ik-Won;Jeon, Weon-Tai;Kang, Ui-Gum;Sohn, Bo-Kyoon;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.149-155
    • /
    • 2012
  • This study was conducted to investigate the effect of liquid pig manure application on soil chemical properties in rice - Chinese milkvetch rotation. Field experiment was designed with APLM 0 (Chinese milkvetch + Liquid pig manure $0L\;m^{-2}$), APLM 50 (Chinese milkvetch + Liquid pig manure $1.8L\;m^{-2}$), APLM 75 (Chinese milkvetch + Liquid pig manure $2.7L\;m^{-2}$) and APLM 100 (Chinese milkvetch + Liquid pig manure $3.6L\;m^{-2}$), respectively. The concentration of O.M, T-N, Avail. $P_2O_5$, K, Ca and Mg at different liquid pig manure levels in soil were generally high in the order of APLM 100 > APLM 75 > APLM 50 > APLM 0. Especially, T-N concentration of soil in APLM 100 was 1.4 times higher than APLM 0. The yield of rice in APLM 100 was $636kg\;10a^{-1}$ (increasing yield 5.3%) compared with APLM 0 in rice-Chinese milkvetch crop rotation. Therefore, application of liquid pig manure was useful in rice - Chinese milkvetch crop rotation.

Effect of Seed Priming on the Enhancement of Seed Germination in Cool Season Turfgrass (Priming 처리가 한지형 잔디류의 발아 증진에 미치는 영향)

  • Kang, Jum-Soon;Son, Beung-Gu;Choi, Young-Whan;Lee, Yong-Jae;Kim, Young-Chul;Choi, In-Soo;Joo, Woo-Hong;Park, Young-Hoon
    • Journal of Life Science
    • /
    • v.18 no.8
    • /
    • pp.1096-1105
    • /
    • 2008
  • This study was carried out to identify the optimum condition for priming, as a series of experiments for the enhancement of germination percentage and germination synchronization in cool-season turfgrass seeds. The optimum priming conditions to maximize the germinability in both Kentucky bluegrass and Tall fescue was a 1 day treatment of 100 mM $K_3PO_4$ at $25^{\circ}C$. The seeds treated with the optimum priming condition enhanced the germinability compared to control, and shortened the time for germination with reduced $T_{50}$ and mean daily germination (MDG). However, as the concentration and treatment period of NaOH or KOH increased, significantly decrease in germination percentage was observed. Germination percentage in Creeping bentgrass and Bentgrass was below 10%, regardless of priming treatment. However, the priming treatment with 200 mM $KNO_3$ for three days improved the germination up to 6%, which was not a statistically significant level. The most effective priming period for Kentucky bluegrass and Tall fescue was one day treatment, but the germinability was suppressed as the treatment period was extended until six days. For priming chemical treatment, germinability was improved with the concentration of 100 mM, while it was reduced at higher concentrations of 200 mM and 300 mM.

Effects of Ginsenoside Metabolites on GABAA Receptor-Mediated Ion Currents

  • Lee, Byung-Hwan;Choi, Sun-Hye;Shin, Tae-Joon;Hwang, Sung-Hee;Kang, Ji-Yeon;Kim, Hyeon-Joong;Kim, Byung-Ju;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • In a previous report, we demonstrated that ginsenoside Rc, one of major ginsenosides from Panax ginseng, enhances ${\gamma}$-aminobutyric acid (GABA) $receptor_A$ ($GABA_A$)-mediated ion channel currents. However, little is known about the effects of ginsenoside metabolites on $GABA_A$ receptor channel activity. The present study investigated the effects of ginsenoside metabolites on human recombinant $GABA_A$ receptor (${\alpha}_1{\beta}_1{\gamma}_{2s}$) channel activity expressed in Xenopus oocytes using a two-electrode voltage clamp technique. M4, a metabolite of protopanaxatriol ginsenosides, more potently inhibited the GABA-induced inward peak current ($I_{GABA}$) than protopanaxadiol (PPD), a metabolite of PPD ginsenosides. The effect of M4 and PPD on $I_{GABA}$ was both concentration-dependent and reversible. The half-inhibitory concentration ($IC_{50}$) values of M4 and PPD were 17.1${\pm}$2.2 and 23.1${\pm}$8.6 ${\mu}M$, respectively. The inhibition of $I_{GABA}$ by M4 and PPD was voltage-independent and non-competitive. This study implies that the regulation of $GABA_A$ receptor channel activity by ginsenoside metabolites differs from that of ginsenosides.

Differential Effects of Ginsenoside Metabolites on HERG K+ Channel Currents

  • Choi, Sun-Hye;Shin, Tae-Joon;Hwang, Sung-Hee;Lee, Byung-Hwan;Kang, Ji-Yeon;Kim, Hyeon-Joong;Oh, Jae-Wook;Bae, Chun-Sik;Lee, Soo-Han;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.191-199
    • /
    • 2011
  • The human ether-a-go-go-related gene (HERG) cardiac $K^+$ channels are one of the representative pharmacological targets for development of drugs against cardiovascular diseases such as arrhythmia. Panax ginseng has been known to exhibit cardioprotective effects. In a previous report we demonstrated that ginsenoside $Rg_3$ regulates HERG $K^+$ channels by decelerating deactivation. However, little is known about how ginsenoside metabolites regulate HERG $K^+$ channel activity. In the present study, we examined the effects of ginsenoside metabolites such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) on HERG $K^+$ channel activity by expressing human a subunits in Xenopus oocytes. CK induced a large persistent deactivatingtail current ($I_{deactivating-tail}$) and significantly decelerated deactivating current decay in a concentration-dependent manner. The $EC_{50}$ for persistent $I_{deactivating-tail}$ was $16.6{\pm}1.3$ ${\mu}M$. In contrast to CK, PPT accelerated deactivating-tail current deactivation. PPD itself had no effects on deactivating-tail currents, whereas PPD inhibited ginsenoside $Rg_3$-induced persistent $I_{deactivating-tail}$ and accelerated HERG $K^+$ channel deactivation in a concentration-dependent manner. These results indicate that ginsenoside metabolites exhibit differential regulation on Ideactivating-tail of HERG $K^+$ channel.