• Title/Summary/Keyword: Bio-composite materials

Search Result 123, Processing Time 0.026 seconds

Optimizing slow pyrolysis of banana peels wastes using response surface methodology

  • Omulo, Godfrey;Banadda, Noble;Kabenge, Isa;Seay, Jeffrey
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.354-361
    • /
    • 2019
  • Renewable energy from biomass and biodegradable wastes can significantly supplement the global energy demand if properly harnessed. Pyrolysis is the most profound modern technique that has proved effective and efficient in the energy conversion of biomass to yield various products like bio-oil, biochar, and syngas. This study focuses on optimization of slow pyrolysis of banana peels waste to yield banana peels vinegar, tar and biochar as bio-infrastructure products. Response surface methodology using central composite design was used to determine the optimum conditions for the banana wastes using a batch reactor pyrolysis system. Three factors namely heating temperature ($350-550^{\circ}C$), sample mass (200-800 g) and residence time (45-90 min) were varied with a total of 20 individual experiments. The optimal conditions for wood vinegar yield (48.01%) were $362.6^{\circ}C$, 989.9 g and 104.2 min for peels and biochar yield (30.10%) were $585.9^{\circ}C$, 989.9 g and 104.2 min. The slow pyrolysis showed significant energy conversion efficiencies of about 90% at p-value ${\leq}0.05$. These research findings are of primary importance to Uganda considering the abundant banana wastes amounting to 17.5 million tonnes generated annually, thus using them as pyrolysis feedstock can boost the country's energy status.

Attachment of Human Gingival Fibroblast to Various Subgingival Restorations;A Comparative Study in Vitro (다양한 치은 연하 수복물에 대한 치은 섬유아 세포 부착 연구)

  • Lee, Eun-Suk;Song, In-Taeck;Lim, Jeong-Su;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.621-636
    • /
    • 1999
  • When mucoperiosteal flaps are positioned and sutured to desirable position, the wound contains several interface between tissues which differ fundamentally in composition & biological reaction. Thus the C-T surface of the flap will, on one hand, oppose another vascularized surface, and on the other, the avascular dental material for example, when root resoptions, fractured root, endodontic perforation, deep root carious lesions were filled with amalgam, glass ionomer, resin etc. Recently, a number of case report described the successful treatment of a subgingival root lesion with restorative material & free gingival graft, open flap surgery, but more objective research was needed . Most of study on restorative materials were concerned for cytotoxicity not for actual healing event on that materials and its influencing factors such as biocompatibility, surface wettability, surface topography . The aim of this in vitro study was to evaluate the effect of amalgam, resin modified glass ionomer, composite resin per se, and their surface roughness on the growth of human gingival fibroblast. The cells were obtained and placed on culture flask and incubated for 3 days with the prepared test materials. Then count the attached cell number with hemocytometer,(n=12) and 2 samples were examined with SEM about attachment cell morphology . Another 4 samples were evaluated on their surface roughness with Talysurf and average surface roughness value(Ra) were obtained. Statistical difference in attached cell number, roughness value were analyzed using ANOVA. The number of attached cell was as follows, for root dentin specimen 16.7${\pm}$4.41, resin modified glass ionomer 14.0${\pm}$4.15, resin 8.13${\pm}$3.63, amalgam 0.72${\pm}$3.33(${\times}10^3$). Between root dentin and resin-modified glass ionomer, no significant difference was observed, but resin, amalgam showed a significant less cell numbers than for root dentin, resin modified glass ionomer cement. SEM examination expressed many cell surface attachment apparatus in root dentin and resin modified glass ionomer specimens. For resin specimen, cell attachment was observed but exposed less appratus. The average surface roughness value are following results. Dentin specimen 0.6972${\pm}$ 0.104, resin modified glass ionomer 0.0822${\pm}$0.009, resin 0.0875${\pm}$0.005, amalgam 4.2145${\pm}$0.985(${\mu}m$). Between root dentin, resin-modified glass ionomer, and resin, no significant difference was observed, but amalgam showed a significant more rough surface than other groups. When evlauated the interrelationship between cell attachment and surface roughness, therefore, there was weak reverse correlation.(pearson correlation : - 0.593) These results suggest that resin modified glass ionomer have the favorable healing potential when used for subgingival restoration. And for relationship between cell attachment and surface characteristics, further investigations were needed.

  • PDF

Effect of Flame Resistant Treatment on The Sound Absorption Capability of Sawdust-mandarin Peel Composite Particleboard (방염처리가 톱밥-귤박 혼합파티클보드의 흡음성능에 미치는 영향)

  • Kang, Chunwon;Jin, Taiquan;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.511-517
    • /
    • 2015
  • Sound absorption capability of the flame resistant treated sawdust-mandarin peel composite particleboard was were estimated by two microphone transfer function methods. The weight of flame resistant treated board slightly increased by the treatment. The treatment improved fire retardant performance by decreasing the charred area of flame resistant treated board. Sound absorption capabilities of flame resistant treated sawdust-mandarin peel composite particleboard, in the entire estimated frequency range of 500-6,400 Hz was slightly lower than those of the control specimen. Sound absorption capability of both the control and flame resistant treated sawdust-mandarin peel composite particleboards were higher than that of commercial gypsum boards, being widely used as a sound absorber for ceiling at the estimated frequency.

Safety Assessments through Acute Oral Toxicity Test and Acute Dermal Toxicity Test of Cement Composite Containing Nano Materials (나노 소재 혼입 시멘트 복합체의 급성경구독성시험 및 급성경피독성시험을 통한 유해성 평가)

  • Jae Hyuck, Sung;Kyung Seuk, Song;Yeonung, Jeong;Sanghwa, Jung;Joo Hyung, Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.411-419
    • /
    • 2022
  • This study conducted acute oral toxicity test and acute dermal toxicity test to evaluate the toxicity of lightweight and high-strength cement composite containing carbon nanotube. It was compared with the toxicity of ordinary concrete that did not contain carbon nanotube. Both lightweight and high-strength cement composite and ordinary concrete were categorized in GHS category 5 as a result of acute oral toxicity test. In addition, no toxic symproms were observed during the acute dermal toxicity test in all specimens, concluding that those were judged to correspond to GHS category 5/unclassified.

Manufacturing of Wood Charcoal Cup by Using Carbonization Method and Its Water Repellency (목재를 이용한 무할렬 숯잔 제조 및 발수특성)

  • Park, Sang Bum;Lee, Min
    • Journal of the Korea Furniture Society
    • /
    • v.25 no.3
    • /
    • pp.207-212
    • /
    • 2014
  • With increased interests in environmental issues, people are looking for new materials that serve special and bio-activated functions. One of interesting materials is charcoal which has excellent adsorption ability for harmful volatile organic compounds, fireproof performance, far-infrared ray emission, and electromagnetic shielding. Since non-crack carbonized board was developed from wood-based composite materials, carbonization method might be applied to woodcraft products such as wood cup and bamboo. In this study, manufacture of wood charcoal bowl was conducted with carbonization method developed in 2009 in order to activate wood products market. Ash tree(Fraxinus rhynchophylla) cup was carbonized at $600^{\circ}C$ with two pretreatments which were phenol resin and wood tar solution treatment. After carbonization of ash tree cup, non-crack charcoal cup were successfully manufactured. Phenol resin treatment affected on charcoal cup manufacturing both positively and negatively. For a positive way, it prevented shrinkage. For a negative way, it decreased water repellency. On the contrary, wood tar treatment accelerated shrinkage a bit and increased water repellency. Based on the results, wood tar can be used as pre-treatment solution for reducing post-treatment costs. We confirmed woodcraft products can be carbonized without deformation, so carbonization may provide a high value-added products from wood.

  • PDF

Electroless Silver Plating of PC/ABS and PC by Plasma Treatment and MmSH Injection Process (Plasma 처리 및 MmSH 사출방법으로 인한 PC/ABS와 PC상의 은도금 밀착성에 관한 연구)

  • Park, Ki-Y.;Lee, Hye-W.;Lee, Jong-K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.1
    • /
    • pp.33-37
    • /
    • 2008
  • Polycarbonate has a high transmittance to light, low specific gravity, flexibility and cost-effectiveness that extends the application field of the polymer to bio-engineering, optics, electronic parts, etc. Moreover, electro plating of metallic film on PC could endow the parts the electromagnetic interference shielding capability. However, poor adhesion of copper on PC limited the wide usage in the industry. In this work, a composite(PC/ABS) and MmSH(Momentary mold Surface Heating) injection process were used to improve the plating characteristics; plating thickness, gloss and adhesion. Also plasma treatment and chemical treatment were employed for improving adhesion. Plating characteristics on PC/ABS were better than those on PC due to the anchoring effect of butadiene. MmSH injection process could ameliorate the gloss and coating adhesion. Also plating thickness and adhesion of PC and PC/ABS were increased by plasma treatment.

Extraction of Micro Filler from Bio-waste Material (Bio waste 소재로부터의 마이크로 필러 추출)

  • Nam, Gibeop;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.209-214
    • /
    • 2018
  • This paper explain about the development of environmental friendly, low cost and stable supply material i.e., rice husk and shell were used as micro incorporating bio waste filler. Those were processed by ball mill and analyzed through micro observation by FE-SEM, EDS and particle size distribution. The obtained filler was mixed with epoxy resin for the manufacturing of CFRP composite and study tensile properties. In EDS analysis main contents of rice husk and rice husk ash are C, O and Si. When rice husk was burned C and Si ration were increased. Shell powder has C, O and Ca. It caused $CaCO_3$ from shell. Surface weighted mean of rice husk powder is $6.19{\mu}m$ and volume weighted mean is $14.77{\mu}m$. And it has rod type particles which caused hair and husk structure parts. Surface weighted mean of rice husk ash powder is $1.55{\mu}m$ and volume weighted means is $8.20{\mu}m$. Surface weighted mean of shell powder is $2.53{\mu}m$ and volume weighted mean is $5.79{\mu}m$. The tensile decreased with increasing the content of micro filler in CFRP composites. In case of rice husk, the significant decrement of tensile strength was observed. and in case of shell powder, there is no effect of changes take place in tensile strength.

Preparation of Bio-Chemical Sensor Electrodes by Using Electrical Impedance Properties of Carbon Nanotube Based Bulk Materials (탄소나노튜브 기반 벌크 소재의 전기적 임피던스 특성을 이용한 생화학 센서용 전극 개발 연구)

  • So, Dae-Sup;Huh, Hoon;Kim, Hee-Jin;Lee, Hai-Won;Kang, In-Pil
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.495-499
    • /
    • 2010
  • To develop chemical and biosensors, this paper studies sensing characteristics of bulk carbon nanotube (CNT) electrodes by means of their electrical impedance properties due to their large surface area and excellence chemical absorptivity. The sensors were fabricated in the form of film and nano web style by using composite process for mass production. The bulk composite electrodes were fabricated with singlewall and multi-wall carbon nanotubes based on host polymers such as Nafion and PAN, using a solution-casting and an electrospinning technique. The resistance and the capacitance of electrodes were measured with LCR meter under the various amounts of buffer solution to study the electrical impedance change properties of them. On the experimental of sensor electrode, impedance characteristics of the composite electrode are affected by its host polymer and nanofiller and its sensing response showed saturated result after applying some amounts of buffer solution for test chemical. Especially, the capacitance values showed drastic changes while the resistance values only changed within few percent range. It is deduced that the ions in the solution penetrated and diffused into the electrodes surface changed the electrical properties of the electrodes much like a doping effect.

Electrochemical Response of Polymer Actuators using Finite Element Formulation and ANSYS/Emag

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.369-375
    • /
    • 2010
  • The two-dimensional finite element formulation for the basic field equations governing electrochemical responses of ionic conducting polymer-metal composite(IPMC) actuators is proposed in the present study. Biaxial deformation of a platinum plated Nafion actuator having 4 electrodes is dominated by electro-osmosis of hydrated ions and self-diffusion of free water molecules. Some numerical studies for IPMC actuators with electric field are carried out in order to show the validity of the proposed formulation and electric field analysis for the initial condition of total charge distribution are conducted using commercial code ANSYS/Emag.

Preparation and Mechanical Properties of Wheat Protein Isolate Films Cross-linked with Resorcinol

  • Chandrasekhar, M.;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.40-45
    • /
    • 2015
  • The purpose of the present work was to preparation and study of full biodegradable Eco-friendly bio-composites by using renewable resources. In this study, wheat protein isolate (WPI) films were formed by cross linking with resorcinol through solution casting method for packaging applications. By varying the resorcinol content (10, 20, 30, 40, and 50 wt %), its effect on mechanical properties of the wheat protein isolate film was measured. The addition of 20% resorcinol led to an overall increase in the tensile strength from 5.2 to 18.6 MPa and modulus increase from 780 to 1132 MPa than WPI films. The % elongation was increased from 2.8 to 9.05 when compared to unmodified WPI film. A thermal phase transition of the prepared WPI was assessed by means of DSC. FTIR is evident that the characteristic WPI spectral IR bands shifted on cross-linking with resorcinol.