• Title/Summary/Keyword: Bio-Conversion

Search Result 299, Processing Time 0.022 seconds

Regenerability of a Ni catalyst in the catalytic steam reforming of biomass pyrolysis volatiles

  • Arregi, Aitor;Lopez, Gartzen;Amutio, Maider;Barbarias, Itsaso;Santamaria, Laura;Bilbao, Javier;Olazar, Martin
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.69-78
    • /
    • 2018
  • A study has been carried out of the regenerability of a commercial Ni catalyst used in the steam reforming of the volatiles from biomass pyrolysis (gases and bio-oil), determining the evolution of the reaction indices (conversion, product yields and $H_2$ production) in successive reaction-regeneration cycles. The causes of catalyst deactivation (coke deposition and Ni sintering) have been ascertained characterizing the deactivated and regenerated catalysts by TPO, TEM, TPR and XRD. Catalyst activity is not fully recovered by coke combustion in the first cycles due to the irreversible deactivation by Ni sintering, but the catalyst reaches a pseudo-stable state beyond the fourth cycle, reproducing its behaviour in subsequent cycles.

Evaluation of Photosynthetic Squalene Production of Engineered Cyanobacteria Using the Chemical Inducer-Free Expression System (무-유도인자 단백질 발현 시스템을 이용한 재조합 시아노박테리아의 광합성 스쿠알렌 생산 평가)

  • Choi, Sun Young;Woo, Han Min
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.298-304
    • /
    • 2021
  • Photosynthetic conversion through cyanobacteria and microalgae is an increasingly serious concern in the global warming crisis. Many value-added substances are produced through strain improvement, and much research and development is being conducted to determine its potential as an actual industrial strain. Economic barriers throughout processing production can be overcome to produce value-added chemicals by microalgal strains. In this study, we engineered cyanobacteria strains for the photosynthetic production of squalene and confirmed the continuous cultivation of CO2 and light conditions. The free-inducer system of gene expression was developed at the cyanobacterial strains. Then, the squalene production level and growth of the recombinant cyanobacteria were analyzed and discussed. For bio solar-cell factories, the ability to regulate genes based on the free-inducer gene expression system promotes metabolic engineering research and construction to produce value-added chemicals.

Simulation Analysis of Bio-Methane Decomposition Using Solar Thermal Energy (태양열 이용 바이오메탄 분해 해석연구)

  • Kim, Haneol;Lee, Sangnam;Lee, Sang Jik;Kim, Jongkyu
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.40-49
    • /
    • 2021
  • In this study, the optical properties, heat transfer capabilities and chemical reaction performance of a methane thermal decomposition reactor using solar heat as a heat source were numerically analyzed on the basis of the cavity shape. The optical properties were analyzed using TracePro, a Monte Carlo ray tracing-based program, and the heat transfer analysis was performed using Fluent, a CFD program. An indirect heating tubular reactor was rotated at a constant speed to prevent damage by the heat source in the solar furnace. The inside of the reactor was filled with a porous catalyst for methane decomposition, and the outside was insulated to reduce heat loss. The performance of the reactor, based on cavity shape, was calculated when solar heat was concentrated on the reactor surface and methane was supplied into the reactor in an environment with a solar irradiance of 700 W/㎡, a wind speed of 1 m/s, and an outdoor temperature of 25℃. Thus, it was confirmed that the heat loss of the full-cavity model decreased to 13% and the methane conversion rate increased by 33.5% when compared to the semi-cavity model.

A Numerical Analysis for High Performance on DME High Pressure Fuel Pump Using Taguchi Method (Taguchi Method 을 이용한 DME 고압 연료 펌프에 대한 고성능 수치 해석)

  • SAMOSIR, BERNIKE FEBRIANA;CHO, WONJUN;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.636-641
    • /
    • 2021
  • Using numerical analysis, various factors influencing the performance development of high-pressure pumps for Dimethyl Ether (DME) engines were identified and the impact of each factor was evaluated using Taguchi method. DME fuels are more compressive than diesel fuels and have the lower heat generation, so it is necessary to increase the size of the plunger and speed (RPM) of the pump as well. In addition, it is necessary to change the shape and design of control valve to control the discharge flow and pressure. In this study, various variables affecting the performance and flow rate increase of high-pressure pumps for DME engines are planned using Taguchi method, and the best design method is proposed using correlation of the most important variables. As a result, we were able to provide the design value needed for a six-liter engine and provide optimal conditions. The best combination factors to optimize the flow rate at RPM 2,000 and diameter plunger with 20 mm. The regression equation can also be used to optimize the flow rate; -8, 13+0, 2552 RPM +54, 17 diam. Plunger.

Design and Parallel Operation of 30 kW SiC MOSFET-Based High Frequency Switching LLC Converter With a Wide Voltage Range for EV Fast Charger (전기자동차 급속충전기용 넓은 전압 범위를 갖는 30kW급 SiC MOSFET 기반 고속 스위칭 LLC 컨버터 설계 및 병렬 운전)

  • Lee, Gi-Young;Min, Sung-Soo;Park, Su-Seong;Cho, Young-Chan;Lee, Sang-Taek;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.165-173
    • /
    • 2022
  • The electrification trend of mobility increases every year due to the development of power semiconductor and battery technology. Accordingly, the development and distribution of fast chargers for electric vehicles (EVs) are in demand. In this study, we propose a design and implementation method of an LLC converter for fast chargers. Two 15 kW LLC converters are configured in parallel to have 30 kW rated output power, and the control algorithm and driving sequence are designed accordingly and verified. In addition, the improved power conversion efficiency is confirmed through zero-voltage switching (ZVS) of the LLC converter and reduction of turn-off loss through snubber capacitors. The implemented 30 kW LLC converters show a wide output voltage range of 200-950 V. Experiments applying various load conditions verify the converter performance.

Facile Synthesis of Bio-Composite Films Obtained from Sugarcane Bagasse and Cardboard Waste

  • Satish Kumar Singh;Sweety Verma;Himanshu Gupta;Avneesh Kumar Gehlaut;Suantak Kamsonlian;Surya Narain Lal;Ankur Gaur;Sanjeev Maken
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.584-590
    • /
    • 2023
  • In this study, we focus on the recycling of cardboard waste and sugarcane bagasse (SCB) for the preparation of carboxymethyl cellulose (CMC) and its conversion into a biodegradable film. Sodium alginate (SA) was added to form a biodegradable composite film. SA was used to increase film permeability. Glycerol, which is a plasticizer, was used to increase the tensile strength (TS) and film expansion. To characterize the CMC, X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy were used. The addition of olive oil to the CMC-SA matrix highlighted its antimicrobial property against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). A slight decrease in tensile strength was observed with the addition of olive oil (OO), which improved the functional properties of the control films as well as lowered moisture content and water solubility. But considering all other factors, the composite films obtained from sugarcane bagasse and cardboard waste incorporated with olive oil are suitable for applications in the field of food packaging.

Production of Cyclodextrin by Bacillus sp. I-5 Cyclodextrin Glucanotransferase (Bacillus sp. I-5 Cyclodextrin Glucanotransferase에 의한 Cyclodextrin의 영향)

  • Kim, Soeng-Hyuck;Choi, Jong-Soo;Chung, Kap-Taek;Yoo, Young-Soo;Jung, Dong-Sun;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.6-11
    • /
    • 1994
  • A cyclodextrin glucanotransferase(CGTase)-producing Bacillus sp. I-5 was isolated from soil and the enzyme exhibited the maximum reaction rate at pH 8.0 and $50^{\circ}C$. It was found that CGTase of I-5 produced ${\beta}-$ and ${\gamma}-CD$ mainly but the production ratio of cyclodextrins (CDs) was influenced by the buffer solution. Sodium acetate significantly stimulated the formation of ${\gamma}-CD$, increasing the content by 35%. The production of CDs was influenced by DE value of starch. The results indicated that DE value in the range of $3.5{\sim}6.0$ were most effective for the CD formation. CGTase was immobilized on the reversibly soluble-insoluble carrier, hydroxypropyl mothylcellulose acetate succinate. The immobilized CGTase was soluble at pH 7.5, and precipitated easily at pH 6.0. Enzyme reactor was designed to produce CD continuously. It was composed of three major stages-CD produttion by immobilized CGTase, conversion of the residual dextrin to glucose by amylase and glucoamylase and alcohol fermentation by yeasts to remove the glucose into alcohol. The yield of total CDs was 3.65g from 10g soluble starch.

  • PDF

Understanding to Enhance Efficiency of Nitrogen Uses in a Reclaimed Tidal Soil

  • Lee, Sang-Eun;Kim, Hye-Jin;Park, Mi-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.955-960
    • /
    • 2012
  • In most agricultural soils, ammonium ($NH_4{^+}$) from fertilizer is quickly converted to nitrate ($NO_3{^-}$) by the process of nitrification which is crucial to the efficiency of N fertilizers and their impact on the environment. The salinity significantly affects efficiency of N fertilizer in reclaimed tidal soil, and the soil pH may influence the conversion rate of ammonium to nitrate and ultimately affect nitrogen losses from the soil profile. Several results suggest that pH has important effects on recovery of fall-applied N in the spring if field conditions are favorable for leaching and denitrification except that effects of soil pH are not serious under unfavorable conditions for N loss by these mechanisms. Soil pH, therefore, deserves attention as an important factor in the newly reclaimed tidal soils with applying N. However, fate of N studies in a newly reclaimed tidal soils have been rarely studied, especially under the conditions of saline-sodic and high pH. Therefore, understanding the fate of nitrogen species transformed from urea treated into the reclaimed tidal soil is important for nutrient management and environmental quality. In this article, we reviewed yields of rice and fate of nitrogen with respect to the properties of reclaimed tidal soils.

The Primary Research on oil Conversion Technology of biomass by Pyrolysis (열분해에 의한 바이오매스의 유류자원화 기술에 관한 기초 연구)

  • Chio, Hyuk-Jin;Yoo, Sun-Kyoung;Oh, Sang-Woo;Lee, Seung-Guk;Lee, Seung-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • This study aims to develop an alternative energy like oil made from marine organic waste by marine products waste, spent fishing nets. There are already many commercial examples and case studies based on the petroleum industry-refuse plastic or refuse tire, however, it is rare that a research developing alternative energy from food waste and organic waste. Therefore, this study investigated the oil made from thermal decomposition under the high temperature and high pressure condition, and examined the possibility for commercial use by testing its own characteristics. A bio-oil from thermal decomposition at $250^{\circ}C$ and 40 atm was hard to remove impurities because of its high viscosity, showed lower caloric value than heavy oil, and generated various gases which were not appropriate for the use of fuel. It is noticeable that thermal decomposition was occurred at $250{\pm}5^{\circ}C$ using steam pressure, which much lower compared to the existing method of thermal decomposition, more than $500^{\circ}C$. Since the high viscosity of bio-oil, it is necessary a further study to use as liquid fuel.

  • PDF

Partial Pressures of $CO_2\;and\;H_2$ and Fate of By-products in Anaerobic Bio-Hydrogen Fermentation (혐기성 생물수소 발효에서 이산화탄소 및 수소의 분압과 부산물의 거동)

  • Park, Woo-Shin;Kim, In-S.
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.408-412
    • /
    • 2005
  • In a previous research, it has been found that it could be possible to increase the partial pressure of hydrogen and hydrogen yield by scavenging the $CO_2$ from the heads pace of reactor. In this research, the positive and negative effects of the $CO_2$ scavenging especially on the fate of by-products were investigated by a batch experiment. Production and conversion of by-products had critical relationships with hydrogen evolution and consumption. The maximum hydrogen fraction in the headspace was increased from 66.4 to 91.2% by removing the $CO_2$ in the headspace and the degradation rate of glucose was also enhanced. The removal of $CO_2$ effectively hindered the homoacetogenesis but caused several negative phenomena. The degradation of ethanol, one of the main products, was inhibited by the high partial pressure of hydrogen and/or the absence of $CO_2$. Also it was observed that other by-products such as propionate, propanol, acetone, etc. could not be degraded further after produced from glucose. On the other hand, solventogenesis was not observed in spite of the high hydrogen partial pressure apart from previous researches and it might hinder the excess production of acetate, which could cause overall inhibition. From this research, it could be implicated that the $CO_2$ scavenging method could be recommended if the fermentation was purposed to produce hydrogen and ethanol.