• Title/Summary/Keyword: Bio material

Search Result 1,225, Processing Time 0.037 seconds

The First Record of Long Headed Eagle Ray, Aetobatus flagellum (Pisces: Myliobatidae) from Korea

  • Oh, Ji-Na;Kim, Sung;Kim, Choong-Gon;Soh, Ho-Young;Jeong, Da-Wa;Lee, Youn-Ho
    • Ocean Science Journal
    • /
    • v.41 no.1
    • /
    • pp.53-57
    • /
    • 2006
  • A specimen of Aetobatus flagellum was collected at Uljin in June 2005 for the first time in Korea. This specimen is characterized by the cephalic fin, the long snout, the dorsal fin between pelvic fins, spiracles on the dorsal side of the disc, the deeply notched nasal curtain and the one row of the teeth in the lower and the upper jaws. And unlike Aetobatus narinari, it does not have any spots on the its dorsal side of the disc. We report this specimen as the first record from Korea and name it 'Bak-jui-ga-o-ri' in Korean.

A Study on Sensing Characteristics of Carbon Nanotube Smart Composite Nano Sensors Based on Electrical Impedance Measurement (탄소나노튜브 스마트 복합소재의 전기적 임피던스 변화를 이용한 나노센서의 센싱 특성 연구)

  • Kang, I.P.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • To address the need for new intelligent sensing, this paper introduces nano sensors made of carbon nanotube (CNT) composites and presents their preliminary experiments. Having smart material properties such as piezoresistivity, chemical and bio selectivity, the nano composite can be used as smart electrodes of the nano sensors. The nano composite sensor can detect structural deterioration, chemical contamination and bio signal by means of its impedance measurement (resistance and capacitance). For a structural application, the change of impedance shows specific patterns depending on the structural deterioration and this characteristic is available for an in-situ multi-functional sensor, which can simultaneously detect multi symptoms of the structure. This study is anticipated to develop a new nano sensor detecting multiple symptoms in structural, chemical and bio applications with simple electric circuits.

  • PDF

Preparation and Properties of Polyurethanes Containing Polycarbonate Polyol/Bio Polyol for Wet Type Artificial Leather (폴리카보네이트 폴리올/바이오 폴리올을 이용한 습식 인조피혁용 폴리우레탄의 제조 및 물성)

  • Sur, Suk-Hun;Ko, Jae-Wang;Choi, Pil-Jun;Lee, Jae-Yeon;Lee, Young-Hee;Kim, Han-Do
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.114-122
    • /
    • 2019
  • The synthesis of bio polyol from renewable resources has attracted attention in recent years. In particular, it is important to take advantage of bio polyols in the synthesis of polymers. In this study, a series of dimethylformamide (DMF) based polyurethanes were synthesized using polycarbonate polyol/bio polyol (PO3G: polytrimethylene ether glycol prepared from 1, 3-propanediol produced by fermentation from corn sugar), methylene diphenyl diisocyanate (MDI) and 1,4-butandiol (BD). The properties of prepared polyurethane films and the cell structure of wet type artificial leather were investigated. As the bio polyol content increased, the tensile strength of polyurethane films decreased, however, the elongation at break increased significantly. As a result of thermal characteristics analysis, the glass transition temperature of polyurethanes increased when increasing the content of polycarbonate polyol. As a result of comparing the cell characteristics of wet type artificial leathers prepared in this study, it was found that the number and uniformity of cells formed in the artificial leather samples increased when increasing the content of polycarbonate polyol in polycarbonate polyol/bio polyol. From these results, it was found that DMF-based polyurethane containing an appropriate amount of bio polyol could be used for wet type artificial leather. The bio textile analysis system according to ASTM standard was used to measure the bio carbon content of polyurethane. The content of bio carbon increased proportionally with the increase of bio polyol content used in polyurethane synthesis.

Zirconia Ceramic Powder Coating of Ti-6AI-4V by Laser Cladding (레이저 클래딩을 이용한 Ti-6AI-4V의 Zirconia 세라믹 분말 코팅)

  • Kang, Kyung-Ho;Kim, Jae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.783-788
    • /
    • 2011
  • The recent development of bio-ceramic material is being studied in various bio-material engineering field. There are lots of technical difficulties because manufacturing or bonding technique are required bio-friendliness, cleanliness and persistence. Zirconia ceramic powder is cladded on Ti-6AI-4V metallurgically by laser cladding processing. Laser cladding system with powder feeding delivery is designed and manufactured for optimum processing condition. Increasing of manufacturing speed and good quality of clad layer are achieved by application of preheating of substrate before laser cladding. The thin dilution and good clad layer on the substrate are obtained for applications of bio-materials such as the dental materials and the articulated joints of human body.

Screening of Anti-Biofilm Compounds from Marine-Derived Fungi and the Effects of Secalonic Acid D on Staphylococcus aureus Biofilm

  • Wang, Jie;Nong, Xu-Hua;Zhang, Xiao-Yong;Xu, Xin-Ya;Amin, Muhammad;Qi, Shu-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1078-1089
    • /
    • 2017
  • Biofilm formation of Staphylococcus aureus is one of its mechanisms of drug resistance. Anti-biofilm screening of 106 compounds from marine-derived fungi displayed that 12 compounds inhibited S. aureus biofilm formation by >50% at the concentration of $100{\mu}g/ml$, and only secalonic acid D (SAD) and B inhibited by >90% at $6.25{\mu}g/ml$ without inhibiting cell growth after 24-h incubation. Meanwhile, it was found that the double bond between C-1 and C-10 of citrinin derivatives and the C-C connection position of two chromone monomers may be important for their anti-biofilm activities. Moreover, SAD slightly facilitated biofilm eradication and influenced its architecture. Furthermore, SAD slowed the cell growth rate in the preceding 18-h incubation and differentially regulated transcriptional expression of several genes, such as agr, isaA, icaA, and icaD, associated with biofilm formation in planktonic and biofilm cells, which may be the reason for the anti-biofilm activity of SAD. Finally, SAD acted synergistically against S. aureus growth and biofilm formation with other antibiotics. These findings indicated that various natural products from marine-derived fungi, such as SAD, could be used as a potential biofilm inhibitor against S. aureus.

Preparation and Properties of Bio-inspired Waterborne Polyurethanes Containing Different Amount of Paraffin Wax

  • Kim, Hye-Lin;Kim, Ae-Li;Lee, Young-Hee;Kim, Sung Yeol;Park, Cha-Cheol;Rahman, Mohammad Mizanur;Kim, Han-Do
    • Textile Coloration and Finishing
    • /
    • v.30 no.1
    • /
    • pp.9-19
    • /
    • 2018
  • To prepare bio-inspired antifouling coating materials having similar structure with lotus, self-crosslinkable waterborne polyurethanes emulsions containing paraffin wax (CWPU/P0, 0.25, 0.5, 1.0, 1.5, 2.0, the number indicated the wt% of wax) were prepared by an emulsifier-free/solvent free prepolymer mixing process. The as-polymerized CWPU/P emulsions containing 0 - 1.00wt% of paraffin wax were found to be stable after 4 months, however, CWPU/P emulsions containing 1.50 and 2.00wt% of paraffin wax were unstable within 1 month storage. Considering the stability of emulsions, the optimum paraffin wax content was found to be about 1wt% to obtain stable antifouling coating emulsion material. The surface topology of CWPU/P film samples was characterized by atomic force microscopy (AFM). This study examined the effect of paraffin wax content on the surface roughness, water contact angle/surface energy, water swelling, light transmittance and tensile properties of CWPU/P film samples.

Inhibitory Effect of adding Phase Change Material (PCM) to Fire Fighter Protective Clothing on Burn Injuries (Phase Change Material (PCM) 소재 적용 소방보호복의 화상발생 억제효과에 관한 연구)

  • Lee, Jun Kyoung
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.16-22
    • /
    • 2016
  • Fire fighters rely on fire fighter protective clothing (FFPC) to provide adequate protection in the various hazardous environments. To enhance its protection performance, the FFPC material must be thick and thus it is difficult to achieve weight reduction. One of the methods of overcoming this problem, the addition of phase change material (PCM) to FFPC, is a new technology. In previous studies, the researches was mostly related to the temperature characteristics of the fibers incorporating PCM, but little information is available about its effect on burn injuries. Thus, in this study, the inhibitory effects of adding PCM to FFPC on second degree burns were investigated through numerical calculations. Thermal analyses of biological tissues and FFPC with embedded PCM exposed to several fire conditions causing severe tissue damage were studied by using a finite difference method based on the Pennes bio-heat equation. FFPC with embedded PCM was found to provide significantly greater protection than conventional fire fighting clothing, because the heat of absorption due to the phase change within the material is used to limit the heat conduction of the material.