• Title/Summary/Keyword: Bio films

Search Result 166, Processing Time 0.026 seconds

Novel Fabrication of Designed Silica Structures Inspired by Silicatein-a

  • Park, Ji-Hun;Kwon, Sun-Bum;Lee, Hee-Seung;Choi, In-Sung S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.557-557
    • /
    • 2012
  • Silicatein-${\alpha}$, the enzyme extracted from silica spicules in glass sponges, has been studied extensively in the way of chemistry from 1999, in which the pioneering work by Morse, D. E. - the discovery of the enzymatic hydrolysis in Silicatein-${\alpha}$ - was published. Since its reaction conditions are physiologically favored, synthesis of various materials, such as gallium oxide, zirconium oxide, and silicon oxide, was achieved without any hazardous wastes. Although some groups synthesized oxide films and particles, they have not achieved yet controlled morphogenesis in the reaction conditions mentioned above. With the knowledge of catalytic triad involved in hydrolysis of silicone alkoxide and oligomerization of silicic acid, we designed the novel peptide amphiphiles to not only form self-assembled structure, but also display similar activities to silicatein-${\alpha}$. Designed templates were able to self-assemble into left-handed helices for the peptide amphiphiles with L-form amino acid, catalyzing polycondensation of silicic acids onto the surface of them. It led to the formation of silica helices with 30-50 nm diameters. These results were characterized by various techniques, including SEM, TEM, and STEM. Given the situation that nano-bio-technology, the bio-applicable technology in nanometer scale, has been attracting considerable attention; this result could be applied to the latest applications in biotechnology, such as biosensors, lab-on-a-chip, biocompatible nanodevices.

  • PDF

GQD layers for Energy-Down-shift layer on silicon solar cells by kinetic spraying method

  • Lee, Gyeong-Dong;Park, Myeong-Jin;Kim, Do-Yeon;Kim, Su-Min;Gang, Byeong-Jun;Kim, Seong-Tak;Kim, Hyeon-Ho;Lee, Hae-Seok;Gang, Yun-Muk;Yun, Seok-Gu;Hong, Byeong-Hui;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.422.1-422.1
    • /
    • 2016
  • Graphene quantum dots (GQDs), a new kind of carbon-based photo luminescent nanomaterial from chemically modified graphene oxide (CMGO) or chemically modified graphene (CMG), has attracted extensive research attention in the last few years due to its outstanding chemical, optical and electrical properties. To further extended its potential applications as optoelectronic devices, solar cells, bio and bio-sensors and so on, intensive research efforts have been devoted to the CMG. However, the CMG, a suspension of aqueous, have problematic since they are prone to agglomeration after drying a solvent. In this study, we synthesized the GQDs from graphite and deposited on silicon substrate by kinetic spray. The photo luminescent properties of deposited GQD films were analyzed and compared with initial GQDs suspension. In addition, its carbon properties were investigated with GQDs solution properties. The properties of deposited GQD films by kinetic spray were similar to that of the GQDs suspension in water. We could provide a pathway for silicon-based silicon based device applications. Finally, the well-adjusted GQD films with photo luminescence effects will show Energy-Down-Shift layer effects on silicon solar cells. The GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density (Jsc) was enhanced by about 2.94 % (0.9 mA/cm2) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).

  • PDF

Folate Contents of Oriental Melon (Cucumis melo) Cultivated in Greenhouse Covered with Different Films and Varieties (시설 피복자재와 품종에 따른 참외 엽산 함량)

  • Chun, Hee;Choi, Yeung-Ha;Um, Yeong-Cheol;Paek, Y;Yu, In-Ho;You, Hee-Yong;Hyun, Tai-Sun;Yon, Mi-Yong;Shin, Yong-Seub
    • Journal of Bio-Environment Control
    • /
    • v.17 no.1
    • /
    • pp.32-37
    • /
    • 2008
  • Light transmittance of PO-2 film was 71.2% higher than any other films, because of low amount of pending water and attaching dust on film surface. On dawn, the air temperature of tunnel were higher than that of outdoors as much as between 11.8 and $14.5^{\circ}C$ on Feb. 19 to 20, 2007. The air temperature in the greenhouse covered with PO-2 film was higher than any other films as much as $2.3^{\circ}C$. Analyzing of folate in oriental melon, the folate contents of fruit were between 68.9 and $113.4\;{\mu}g/100\;g$ according to varieties. In winter, the folate contents in the treatment of PO-2 film was higher than that in the treatment of PE film as much as 17%. Above $15^{\circ}C$ in outdoors mean air temperature, the folate contents were as much as between 55.2 and $75.2\;{\mu}g/100\;g$. The folate contents in the treatment of PO-2 film was higher than that in the treatment of PE film as much as 36%.

Effect of Heat Conservation of Greenhouse Film on Growth and Quality in Oriental Melon (필름두께 및 적외선 흡수율 차이가 참외의 품질 및 수량에 미치는 영향)

  • Shin, Yong-Seub;Yeon, Il-Kweon;Do, Han-Woo;Lee, Ji-Eun;Cheung, Jong-Do;Kang, Chan-Ku;Choi, Chung-Don;Chun, Hee;Choi, Young-Ha;Chung, Doo-Seok
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.167-173
    • /
    • 2007
  • This study was conducted to improve light environment of oriental melon cultivation in winter season. Three polyolefin foreign films (J-1, J-2, J-3) and three polyethylene domestic films (K-1, K-2, K-3) with different film thickness, ultraviolet ray interception and infrared ray absorption were used. As the result of this experiment, soluble solid of oriental melon fruit in K-3 was $14.3^{\circ}Brix$, those in J-3 and J-2 were higher by 1.3 and $0.8^{\circ}Brix$, respectively. Chromaticity (a value) of pericarp in K-3 was 0.5, those in J-3, J-1 and J-2 were higher by 3.3, 2.3 and 1.9, respectively. Especially, fermented and malformed fruit rates in J-1, J-2 and J-3 were decreased and marketable fruit rates were increased. Marketable yield in K-3 was 1,622 kg per 10a, those in J-1, J-3 and J-2 were increased by 31.2%, 23.8% and 18.5% compare to K-3, respectively. In this study, Polyolefin films (J-1, J-2, J-3) with thickness and infrared ray absorption ratio keeping higher heat conservation, therefore, soluble solid and chromaticity of fruit were increased, fermented fruit rate was decreased, and marketable fruit rate and yield were increased.

Hybrid Fabrication of Screen-printed Pb(Zr,Ti)O3 Thick Films Using a Sol-infiltration and Photosensitive Direct-patterning Technique (졸-침투와 감광성 직접-패턴 기술을 이용하여 스크린인쇄된 Pb(Zr,Ti)O3 후막의 하이브리드 제작)

  • Lee, J.-H.;Kim, T.S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.83-89
    • /
    • 2015
  • In this paper, we propose a fabrication technique for enhanced electrical properties of piezoelectric thick films with excellent patterning property using sol-infiltration and a direct-patterning process. To achieve the needs of high-density and direct-patterning at a low sintering temperature (< $850^{\circ}C$), a photosensitive lead zirconate titanate (PZT) solution was infiltrated into a screen-printed thick film. The direct-patterned PZT films were clearly formed on a locally screen-printed thick film, using a photomask and UV light. Because UV light is scattered in the screen-printed thick film of a porous powder-based structure, there are needs to optimize the photosensitive PZT sol infiltration process for obtaining the enhanced properties of PZT thick film. By optimizing the concentration of the photosensitive PZT sol, UV irradiation time, and solvent developing time, the hybrid films prepared with 0.35 M of PZT sol, 4 min of UV irradiation and 15 sec solvent developing time, showed a very dense with a large grain size at a low sintering temperature of $800^{\circ}C$. It also illustrated enhanced electrical properties (remnant polarization, $P_r$, and coercive field, $E_c$). The $P_r$ value was over four times higher than those of the screen-printed films. These films integrated on silicon wafer substrate could give a potential of applications in micro-sensors and -actuators.

Deposition Characteristics of TiO2 Thin Films Prepared by DC Pulsed Magnetron Sputtering (DC 펄스 마그네트론 스퍼터링으로 증착된 TiO2 박막의 특성변화에 관한 연구)

  • An, Eunsol;Heo, Sung-Bo;Kim, Kyu-Sik;Jung, Uoo Chang;Park, Yong Ho;Park, In-Wook
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.2
    • /
    • pp.43-49
    • /
    • 2015
  • This study reports a fabrication of $TiO_2$ on the surface of dental implants by pulsed d.c. magnetron sputtering from a Ti target. A systematic investigation on the microstructure and mechanical properties of $TiO_2$ films was carried out with the variation of $O_2$ contents and substrate temperatures. The effects of deposition parameters on the fabricated structures were investigated by X-ray diffraction (XRD) technique and field emission scanning electron microscope (FE-SEM). Hydrophilic properties were evaluated by measuring water contact angles on the film surface. With increasing $O_2$ contents up to 40%, surface roughness of $TiO_2$ film increased while relatively smooth surface was obtained with 50% $O_2$ contents. Surface roughness and adhesion strength both increased as substrate temperature increased up to $200^{\circ}C$. From these results, hydrophilic and adhesive properties of the present $TiO_2$ films synthesized with 40% $O_2$ at $200^{\circ}C$ are regarded to be suitable for bio-compatible applications.

Hydrophillic and Hydrophobic Properties of Sol-Gel Processed Sillica Coating Layers

  • Kim, Eun-Kyeong;Lee, Chul-Sung;Hwang, Tae-Jin;Kim, Sang-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.505-505
    • /
    • 2011
  • The control of wettability of thin films is of great importance and its success surely brings us huge applications such as self-cleaning, antifogging and bio-passive treatments. Usually, the control is accomplished by modifying either surface energy or surface topography of films. In general, hydrophobic surface can be produced by coating low surface energy materials such as fluoropolymer or by increasing surface roughness. In contrast, to enhance the hydrophillicity of solid surfaces, high surface energy and smoothness are required. Silica (SiO2) is environmentally safe, harmless to human body and excellently inert to most chemicals. Also its chemical composition is made up of the most abundant elements on the earth's crest, which means that SiO2 is inherently economical in synthesis. Moreover, modification in chemistry of SiO2 into various inorganic-organic hybrid materials and synthesis of films are easily undertaken with the sol-gel process. The contact angle of water on a flat silica surface on which the Young's equation operates shows ~50o. This is a slightly hydrophilic surface. Many attempts have been made to enhance hydrophilicity of silica surfaces. In recent years, superhydrophilic and antireflective coatings of silica were fabricated from silica nanoparticles and polyelectrolytes via a layer-by-layer assembly and postcalcination treatment. This coating layer has a high transmittance value of 97.1% and a short water spread time to flat of <0.5 s, indicating that both antireflective and superhydrophilic functions were realized on the silica surfaces. In this study, we assessed hydrophillicity and hydrophobicity of silica coating layers that were synthesized using the sol-gel process. Systematic changes of processing parameters greatly influence their surface properties.

  • PDF

Plasmonic Nanosheet towards Biosensing Applications

  • Tamada, Kaoru
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.105-106
    • /
    • 2013
  • Surface plasmon resonance (SPR) is classified into the propagating surface plasmon (PSP) excited on flat metal surfaces and the local surface plasmon (LSP) excited by metalnanoparticles. It is known that fluorescence signals are enhanced by these two SPR-fields.On the other hand, fluorescence is quenched by the energy transfer to metal (FRET). Bothphenomena are controlled by the distance between dyes and metals, and the degree offluorescence enhancement is determined by the correlation. In this study, we determined thecondition to achieve the maximum fluorescence enhancement by adjusting the distance of ametal nanoparticle 2D sheet and a quantum dots 2D sheet by the use of $SiO_2$ spacer layers. The 2D sheets consisting of myristate-capped Ag nanoparticles (AgMy nanosheets) wereprepared at the air-water interface and transferred onto hydrophobized gold thin films basedon the Langmuir-Schaefer (LS) method [1]. The $SiO_2$ sputtered films with different thickness (0~100 nm) were deposited on the AgMy nanosheet as an insulator. TOPO-cappedCdSe/CdZnS/ZnS quantum dots (QDs, ${\lambda}Ex=638nm$) [2] were also transferred onto the $SiO_2$ films by the LS method. The layered structure is schematically shown in Fig. 1. The result of fluorescence measurement is shown in Fig. 2. Without the $SiO_2$ layer, the fluorescence intensity of the layered QD film was lower than that of the original QDs layer, i.e., the quenching by FRET was predominant. When the $SiO_2$ thickness was increased, the fluorescence intensity of the layered QD film was higher than that of the original QDs layer, i.e., the SPR enhancement was predominant. The fluorescence intensity was maximal at the $SiO_2$ thickness of 20 nm, particularly when the LSPR absorption wavelength (${\lambda}=480nm$) was utilized for the excitation. This plasmonic nanosheet can be integrated intogreen or bio-devices as the creation point ofenhanced LSPR field.

  • PDF

Effect of Modified Atmosphere Packaging in Microperforated Film on Maintenance of the Quality of Fresh-Cut Apples (미세 천공 필름에 의한 신선절단 사과의 MA포장 효과)

  • Chung, Hun-Sik;Toivonen, Peter;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.15 no.3
    • /
    • pp.347-351
    • /
    • 2008
  • The effect of microperforated packaging films on fresh-cut apples was studied Apples (Malus domestica Borkh. cv. Red Delicious) were cored and cut, packaged in laser microperforated film or non-microperforated polyolefin film, and stored for 3 weeks at 4C. The flesh firmness of apples packaged in microperforated film during the storage period was significantly higher than that of apples packaged in non-microperforated film, and the level of soluble solids was also higher. The browning index, titratable acidity, pH, acetaldehyde and ethanol levels were not affected by microperforation. These results show that microperforated films could be used for retention of flesh firmness in fresh-cut apples.

Use of Functional Films for Storage of Seed Tuber in Liriope platyphylla (맥문동 뿌리줄기의 저장력 향상을 위한 기능성필름 활용)

  • Seong, Eun Soo;Choi, Jae Hoo;Kim, Hee Kyu;Choi, Seung Hyuk;Kim, Chul Joong;Lee, Jae Geun;Yoo, Ji Hye;Kim, Na Young;Yu, Chang Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.4
    • /
    • pp.296-301
    • /
    • 2018
  • Background: The objective of this study was to investigate the effect of packaging material on the growth of rootstock of Liriope platyphylla. Methods and Results: This study examined the effects of two types of packaging material, LDPE (low density polyethylene) and functional film on the growth of the tubers of L. platyphylla, at $5^{\circ}C$. During the 16-weeks of storage period, the ratio of loss and decay of the tubers was examined at intervals of 4, 8, and 16 weeks to detect the quality of the plant. After 16 weeks of storage, the treated tubers were own. Subsequently, plant height and the number of leaves were recorded. The results revealed that functional film at $5^{\circ}C$ was the ideal material for the storage of L. platyphylla tubers. The rate of loss was the highest (57.42%) with a onion net and the lowest (22.12%) with a functional film. Similarly, the rate of tuber decay was highest (8.20%) using onion net and the least (4.60%) when the functional film was used. Conclusions: Thus, the use of the functional film proved to be the most effective in the storage of L. platyphylla tubers when compared with the LDPE.