• 제목/요약/키워드: Bio Safety Cabinet(BSC)

검색결과 3건 처리시간 0.018초

Analysis of Variation in Total Airborne Bacteria Concentration to Assess the Performance of Biological Safety Cabinets in Microbial Laboratories

  • Hwang, Sung Ho;Park, Hyun Hee;Yoon, Chung Sik
    • Safety and Health at Work
    • /
    • 제5권1호
    • /
    • pp.23-26
    • /
    • 2014
  • Background: The purpose of this study was to compare the concentration of total airborne bacteria (TAB) in biosafety cabinets (BSCs) at universities and hospital microbial laboratories to assess the performance of BSCs. Methods: TAB was determined by using the single-stage Anderson sampler (BioStage Viable Cascade Impactor). The samples were obtained three times (with the BSC turned off and the shield open; with the BSC turned off and the shield closed; and with the BSC tuned on and operating) from the areas in front of 11 BSCs. Results: TAB concentrations of accredited and nonaccredited BSCs were determined. No significant differences were observed in the TAB concentrations of the accredited BSCs and the nonaccredited BSCs for the areas outside the BSCs in the laboratories (p > 0.05). TAB concentrations for the BSCs sampled with the shield open and the instrument turned off showed differences based on the sampling site outside the BSC in each laboratory. Conclusion: These results imply that TAB concentration is not altered by the performance of the BSCs or TAB itself and/or concentration of TAB outside the BSC is not a good index of BSC performance.

멀티죤 시뮬레이션을 이용한 생물안전 3등급(BSL3)시설의 설계 검증에 관한 연구 (A Study on Verification for the Design of Bio Safety Level 3 Laboratory by using Multi-zone Simulation)

  • 이현우;최상곤;홍진관
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.745-750
    • /
    • 2009
  • In Korea, since the implementation of the GMO Law, the intrest of biosafety level 3(BL3) lab. is increasing. In this study, using CONTAM which is applying multizone modelling, the multizone simulation for design verification of BL3 lab. was performed. In BL3 lab., because required air change rate is greater than general estimated air-conditioning load and it is difficult to maintain room pressure difference efficiently, to maintain pressure difference between laboratory rooms is important through sealing condition of doors and proper airflow control of laboratory rooms. In this study, about BL3 lab.(M. tuberculosis research lab.), the multizone simulation for four kind of biohazard scenarios was performed in the case of unexpected spread of contaminants in the laboratory room, anteroom, corridor and inside of BSC. Multizone simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.

  • PDF

멀티죤 시뮬레이션을 이용한 생물안전 3등급(BSL3)시설의 설계 검증에 관한 연구 (A Study on Verification for the Design of Bio Safety Level 3 Laboratory by using Multi-zone Simulation)

  • 이현우;최상곤;홍진관
    • 설비공학논문집
    • /
    • 제21권12호
    • /
    • pp.671-677
    • /
    • 2009
  • In Korea, since the implementation of the LMO Law, the interest of biosafety level 3(BL3) lab. is increasing. In this study, using CONTAM which is applying multizone modelling, the multizone simulation for design verification of BL3 lab. is performed. In BL3 lab., because required air change rate is greater than general estimated air-conditioning load and it is difficult to maintain room pressure difference efficiently, to maintain pressure difference between laboratory rooms is important through sealing condition of doors and proper airflow control of laboratory rooms. In this study, about BL3 lab,(M. tuberculosis research lab.), the multizone simulation for four kind of biohazard scenarios is carried out in the case of unexpected spread of contaminants in the laboratory room, anteroom, corridor and inside of BSC. Multizone simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.