• Title/Summary/Keyword: Bio Safety Cabinet(BSC)

Search Result 3, Processing Time 0.016 seconds

Analysis of Variation in Total Airborne Bacteria Concentration to Assess the Performance of Biological Safety Cabinets in Microbial Laboratories

  • Hwang, Sung Ho;Park, Hyun Hee;Yoon, Chung Sik
    • Safety and Health at Work
    • /
    • v.5 no.1
    • /
    • pp.23-26
    • /
    • 2014
  • Background: The purpose of this study was to compare the concentration of total airborne bacteria (TAB) in biosafety cabinets (BSCs) at universities and hospital microbial laboratories to assess the performance of BSCs. Methods: TAB was determined by using the single-stage Anderson sampler (BioStage Viable Cascade Impactor). The samples were obtained three times (with the BSC turned off and the shield open; with the BSC turned off and the shield closed; and with the BSC tuned on and operating) from the areas in front of 11 BSCs. Results: TAB concentrations of accredited and nonaccredited BSCs were determined. No significant differences were observed in the TAB concentrations of the accredited BSCs and the nonaccredited BSCs for the areas outside the BSCs in the laboratories (p > 0.05). TAB concentrations for the BSCs sampled with the shield open and the instrument turned off showed differences based on the sampling site outside the BSC in each laboratory. Conclusion: These results imply that TAB concentration is not altered by the performance of the BSCs or TAB itself and/or concentration of TAB outside the BSC is not a good index of BSC performance.

A Study on Verification for the Design of Bio Safety Level 3 Laboratory by using Multi-zone Simulation (멀티죤 시뮬레이션을 이용한 생물안전 3등급(BSL3)시설의 설계 검증에 관한 연구)

  • Lee, Hyun-Woo;Choi, Sang-Gon;Hong, Jin-Kwan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.745-750
    • /
    • 2009
  • In Korea, since the implementation of the GMO Law, the intrest of biosafety level 3(BL3) lab. is increasing. In this study, using CONTAM which is applying multizone modelling, the multizone simulation for design verification of BL3 lab. was performed. In BL3 lab., because required air change rate is greater than general estimated air-conditioning load and it is difficult to maintain room pressure difference efficiently, to maintain pressure difference between laboratory rooms is important through sealing condition of doors and proper airflow control of laboratory rooms. In this study, about BL3 lab.(M. tuberculosis research lab.), the multizone simulation for four kind of biohazard scenarios was performed in the case of unexpected spread of contaminants in the laboratory room, anteroom, corridor and inside of BSC. Multizone simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.

  • PDF

A Study on Verification for the Design of Bio Safety Level 3 Laboratory by using Multi-zone Simulation (멀티죤 시뮬레이션을 이용한 생물안전 3등급(BSL3)시설의 설계 검증에 관한 연구)

  • Lee, Hyun-Woo;Choi, Sang-Gon;Hong, Jin-Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.671-677
    • /
    • 2009
  • In Korea, since the implementation of the LMO Law, the interest of biosafety level 3(BL3) lab. is increasing. In this study, using CONTAM which is applying multizone modelling, the multizone simulation for design verification of BL3 lab. is performed. In BL3 lab., because required air change rate is greater than general estimated air-conditioning load and it is difficult to maintain room pressure difference efficiently, to maintain pressure difference between laboratory rooms is important through sealing condition of doors and proper airflow control of laboratory rooms. In this study, about BL3 lab,(M. tuberculosis research lab.), the multizone simulation for four kind of biohazard scenarios is carried out in the case of unexpected spread of contaminants in the laboratory room, anteroom, corridor and inside of BSC. Multizone simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.