• Title/Summary/Keyword: Bio Ethanol

Search Result 612, Processing Time 0.03 seconds

Effect of Alpina Officinarum Ethanol Extract on Immunoregulatory Activities in the Mice (양강 에탄올 추출물이 마우스에서 면역조절작용에 미치는 영향)

  • Kim, Hyang Suk;Chung, Kyung Tae;Lee, In Hwan;Choi, Woo Bong;Lee, Jong Hwan;Hyun, Sook Kyung;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.61-66
    • /
    • 2014
  • The purpose of this study was to investigate the immunomodulatory effects of Alpina officinarum (AO) ethanol extract on immunocompromised mice. The mice were injected intraperitoneally with an immunosuppressive drug, cyclophosphamide, and then administrated orally with 30, 100, and 300 mg/kg of ethanol extract of AO (AO 30, AO 100, and AO 300, respectively). The concentrations of cytokines and immunoglobulins (IgM, IgA, IgG) in serum were measured. The body weight of the mice and spleen cell number of the AO-fed group showed no significant difference compared to a control group. The concentrations of several cytokines, including IL-2, IFN-${\gamma}$, and TGF-${\beta}$, in serum showed a significant increase in the AO 100 group compared to the control and other groups (p<0.05). The IL-4 level showed no significant difference in the experimental groups. The supplementation of AO (30, 100, 300 mg/kg) significantly increased the concentration of IgM (p<0.05). The concentration of IgA was significantly increased in the AO 100 group (p<0.05) compared to the control group. It can be concluded that AO ethanol extract enhances immune function by promoting the production of cytokines and immunoglobulins.

Recent Progress in Strain Development of Zymomonas mobilis for Lignocellulosic Ethanol Production (Zymomonas mobilis를 이용한 목질계 에탄올 생산을 위한 균주 개선에 관한 연구 동향)

  • Jeon, Young Jae
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.135-145
    • /
    • 2019
  • Zymomonas mobilis has been recognized as a potential industrial ethanologen for many decades due to its outstanding fermentation characteristics, including high ethanol tolerance, fast sugar uptake rate, and high theoretical ethanol yield. With the emergence of the postgenomic era and the recent announcement of DuPont's world largest cellulosic ethanol production process, research on this bacterium has become even more important to harness successful application not only for use in the bioethanol process but also in other biochemical processes, which can be included in bio-refinery. As an important industrial microorganism, Z. mobilis will likely be exposed to various stressful environments, such as toxic chemicals, including the end-product ethanol and fermentative inhibitory compounds (e.g., furan derivatives, organic acids, and lignin derivatives in pretreatment steps), as well as physical stresses, such as high temperature during large-scale ethanol fermentation. This review focuses on recent information related to the industrial robustness of this bacterium and strain development to improve the ethanol yield and productivity in the lignocellulosic ethanol process. Although several excellent review articles on the strain development of this bacterium have been published, this review aims to fill gaps in the literature by highlighting recent advances in physiological understanding of this bacterium that may aid strain developments and improve the ethanol productivity for lignocellulosic biomass.

Partial Pressures of $CO_2\;and\;H_2$ and Fate of By-products in Anaerobic Bio-Hydrogen Fermentation (혐기성 생물수소 발효에서 이산화탄소 및 수소의 분압과 부산물의 거동)

  • Park, Woo-Shin;Kim, In-S.
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.408-412
    • /
    • 2005
  • In a previous research, it has been found that it could be possible to increase the partial pressure of hydrogen and hydrogen yield by scavenging the $CO_2$ from the heads pace of reactor. In this research, the positive and negative effects of the $CO_2$ scavenging especially on the fate of by-products were investigated by a batch experiment. Production and conversion of by-products had critical relationships with hydrogen evolution and consumption. The maximum hydrogen fraction in the headspace was increased from 66.4 to 91.2% by removing the $CO_2$ in the headspace and the degradation rate of glucose was also enhanced. The removal of $CO_2$ effectively hindered the homoacetogenesis but caused several negative phenomena. The degradation of ethanol, one of the main products, was inhibited by the high partial pressure of hydrogen and/or the absence of $CO_2$. Also it was observed that other by-products such as propionate, propanol, acetone, etc. could not be degraded further after produced from glucose. On the other hand, solventogenesis was not observed in spite of the high hydrogen partial pressure apart from previous researches and it might hinder the excess production of acetate, which could cause overall inhibition. From this research, it could be implicated that the $CO_2$ scavenging method could be recommended if the fermentation was purposed to produce hydrogen and ethanol.

Study on anti-oxidant and cosmeceutical activities of Isatis tinctoria L. (판람근(Isatis tinctoria L., 板藍根)추출물의 항산화활성 및 화장품약리활성에 관한 연구)

  • Kim, Young-Hun;Cho, Woo-A;Cheon, Soon-Ju;Jang, Min-Jung;Sung, Ji-Yeun;Jung, Su-Hyun;Choi, Hyang-Ja;Kim, Dae-Ik;Kim, Jung-Ok;Lee, Chang-Eon;An, Bong-Jeun;Lee, Jin-Tae
    • The Korea Journal of Herbology
    • /
    • v.22 no.3
    • /
    • pp.85-91
    • /
    • 2007
  • Objective : In this study, anti-oxidant and cosmeceutical activities of Isatis tinctoria L. extracted from water, ethanol and supercritical fluid condition were confirmed to investigate cosmeceutical activities for utilization as cosmetic ingredient. Methods: Anti-oxidant and cosmeceutical activities were investigated by using electron donating ability, xanthine oxidase, tyrosinase, astringent effect. Result : Isatis tinctoria L. extracts by supercritical fluid, water and ethanol showed good electron donating ability which were 82.7%, 62.6% and 44.8% at the concentration at 1,000ppm, respectively. Xanthine oxidase activity related with purine metabolism was inhibited by ethanol extract about 52.3% at the concentration at 1,000ppm. Tyrosinase inhibition effects, by supercritical fluid extract, ethanol extract and water extract, were 83.3%, 52.9% and 41.2% respectively at 1,000ppm. In the measurement of astringent effect, supercritical fluid extract at the concentration to 5,000ppm showed 85.7% in related activity. The water extract showed 95.9% nitrite scavenging activity at 5,000ppm. Conclusion : According to these results, it is possible that the extract of Isatis tinctoria L. can be used as a new natural material of cosmetic industry.

  • PDF

Inactivation Mechanism of Bacillus subtilis Spores by Ethanol Extract of Torilis japonica Fruit

  • Cho, Won-Il;Cheigh, Chan-Ick;Choi, You-Jung;Jeong, Jeong-Yoon;Choi, Jun-Bong;Lee, Kang-Pyo;Cho, Seok-Cheol;Pyun, Yu-Ryang;Chung, Myong-Soo
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.336-342
    • /
    • 2009
  • To confirm the antimicobial mechanism of Torilis japonica, antimicrobial profile was observed on various spore conditions by combining 0.1% (3 mM) torilin with antimicrobial activity and 0.27% water fraction with germinants. A 75% ethanol extract of T. japonica fruit reduced Bacillus subtilis ATCC 6633 spore counts by 3 log cycles and reduced the vegetative cells to undetectable level (by about 6 log cycles) (both in terms of CFU/mL). Further fractionating the ethanol extract into n-hexane and water fractions revealed that the former reduced the spore count by 1 log cycle whereas the latter had no effect. The antimicrobial active compound was isolated and purified from the hexane layer, and identified as torilin ($C_{22}H_{32}O_5$). The water fraction of the ethanol layer did not show antimicrobial activity, whereas the antimicrobial effect of 0.1% (3 mM) torilin was significantly enhanced in the presence of the water fraction (0.27%). This result can be explained by synergistic effects of the water fraction containing considerable amounts of germinants such as L-alanine and K+ ions that triggered germination.

Monitoring on Extraction Yields and Functional Properties of Brassica oleracea var. capita Extracts

  • Kim, Hyun-Ku;Lee, Gee-Dong;Kwon, Joong-Ho;Kim, Kong-Hwan
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.836-840
    • /
    • 2005
  • Extraction characteristics of Bonus species of Brassica oleracea var. capita and functional properties of corresponding extract were monitored by response surface methodology (RSM). Maximum extraction yield of 44.07% was obtained at ratio of solvent to sample of 27.94 mL/g, ethanol concentration of 24.35%, and extraction temperature of $55.21^{\circ}C$. At ratio of solvent to sample, ethanol concentration, and extraction temperature of 21.11 mL/g, 58.53%, and $68.83^{\circ}C$, respectively, maximum electron-donating ability was 48.44%. Maximum inhibitory effect on tyrosinase was 68.94% at ratio of solvent to sample, ethanol concentration, and extraction temperature of 24.08 mL/g, 10.49%, and $78.71^{\circ}C$, respectively. Superoxide dismutase (SOD) showed maximum pseudo-activity of 24.78% at ratio of solvent to sample of 22.66 mL/g, ethanol concentration of 45.69%, and extraction temperature of $93.81^{\circ}C$. Based on superimposition of four-dimensional RSM with respect to extraction yield, electron-donating ability, and pseudo-activity of SOD, optimum ranges of extraction conditions were ratio of solvent to sample of 20-30 mL/g, ethanol concentration of 35-65%, and extraction temperature of $50-80^{\circ}C$.

Monitoring the Functional Properties of Pleurotus eryngii Extracts Using Response Surface Methodology

  • Oh, Hyun-In;Lim, Tae-Soo;Lee, Gee-Dong;Kim, Hyun-Ku
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.299-305
    • /
    • 2007
  • Response surface methodology was employed to optimize extraction conditions for finding the maximal functional properties of Pleurotus eryngii. Based on central composite design, the study plan was established with variations of microwave power (30-150 W), ethanol concentration (0-99.9%), and extraction time (1-9 min). Regression analysis was applied to obtain a mathematical model. A maximal yield of 47.86% was obtained when the microwave power, ethanol concentration, and extraction time were set at 122.7 W, 42.14%, and 8.3 min, respectively. A maximized electron donating ability of 93.32% was found under the following conditions: a microwave power of 144.19 W, an ethanol concentration of 49.52%, and an extraction time of 6.7 min. When the microwave power, ethanol concentration, and extraction time were set at 125.43 W, 40.54%, and 8.1 min, respectively, the maximum nitrite-scavenging ability was 80.47%. The optimum ranges of the extraction conditions, superimposed by the response surface methodology, could predicate a microwave power of 110-150 W, ethanol concentration of 0-45%, and extraction time of 7-9 min.

Antioxidant and Anticancer Effects of Agrimony (Agrimonia pilosa L.) and Chinese Lizardtail (Saururus chinensis Baill) (짚신나물, 삼백초의 항산화와 항암활성 효과)

  • Seo, Hun-Seok;Chung, Bong-Hwan;Cho, Yong-Gu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.3
    • /
    • pp.139-143
    • /
    • 2008
  • The antioxidant activities of Agrimony (Agrimonia pilosa L.) and Chinese lizardtail (Saururus chinensis Baill) according to extraction methods were measured. SOD-like activity showed greater antioxidant effects with ethanol solvent than those with water. Ethanol extracts of Agrimony leaves showed the highest SOD-like activity of 94.4%. SOD-like activity differed according to the extraction solvents. The contents of polyphenolic compounds were higher in water extracts than those in ethanol extracts. The contents were 161.4 mg for Agrimony roots, 100.2 mg for Agrimony leaves, and 79.1 mg for Agrimony stalks in order. EDA in Agrimony leaves that were highest among medicinal plants were 83.4% in the water extract and 81.7% in the ethanol extract. The anticancer effects of the extracts by water and ethanol from Agrimony and Chinese lizardtail were experimented. The growth of stomach cancer cells, SNU-719 was inhibited 94.5% by the hexane fractions of Agrimony and also the growth of liver cancer cells, Hep3B was inhibited 83.2% by the hexane fractions of Agrimony, while the growth of normal cell, DC2.4 was not affected.

Multi-response Optimization for Unfertilized Corn Silk Extraction Against Phytochemical Contents and Bio-activities

  • Lim, Ji Eun;Kim, Sun Lim;Kang, Hyeon Jung;Kim, Woo Kyoung;Kim, Myung Hwan
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.256-266
    • /
    • 2017
  • This study was designed to optimize ethanol extraction process of unfertilized corn silk (UCS) to maximize phytochemical contents and bioactivities. The response surface methodology (RSM) with central composite design (CCD) was employed to obtain the optimal extraction conditions. The influence of ethanol concentration, extraction temperature and extraction time on total polyphenol contents, total flavonoid contents, maysin contents, 2,2-diphenyl-1-picrylhydrazyl(DPPH) radical scavenging activities and tyrosinase inhibition were analyzed. For all dependable variables, the most significant factor was ethanol concentration followed by extraction temperature and extraction time. The following optimum conditions were determined by simultaneous optimization of several responses with the Derringer's desirability function using the numerical optimization function of the Design-Expert program: ethanol concentration 80.45%, extraction temperature $53.49^{\circ}C$, and extraction time 4.95 h. Under these conditions, the predicted values of total polyphenol contents, total flavonoid contents, maysin contents, DPPH radical scavenging activity and tyrosinase inhibition were $2758.74{\mu}g\;GAE/g$ dried sample, $1520.81{\mu}g\;QUE/g$ dried sample, 810.26 mg/100g dried sample, 56.86% and 43.49%, respectively, and the overall desirability (D) was 0.74.

Influence of Low Level Bio-Alcohol Fuels on Fuel Economy and Emissions in Spark Ignition Engine Vehicles (저농도 바이오알코올 혼합 연료가 스파크 점화 엔진 차량의 연비 및 배출가스에 미치는 영향)

  • CHA, GYUSOB;NO, SOOYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.250-258
    • /
    • 2020
  • This study was conducted to analyze the impact of low level bio-alcohols that can be applied without modification of vehicles to improve air quality in Korea. The emissions and fuel economy of low level bio-alcohols mixed gasoline fuels of spark ignition vehicles, which are direct injection and port fuel injection, were studied in this paper. As a result of the evaluation, the particle number (PN) was reduced in all evaluation fuels compared to the sub octane gasoline without oxygen, but the correlation with the PN due to the increase in the oxygen content was not clear. In the CVS-75 mode, emitted CO tended to decrease compared to sub octane gasoline, but no significant correlation was found between NMHC, NOx and fuel economy. In addition, it was found that the aldehyde increased in the oxygenated fuel, and there was no difference in terms of the amount of aldehyde generated among a series of bio-alcohol mixed fuels.