Journal of the Korean Data and Information Science Society
/
제13권2호
/
pp.129-138
/
2002
This paper deals with logistic regression models for analysing separation rates from majors. The model building procedure shows how to incoporate the effects of some factors causing from three-way nested sampling scheme and discusses what type of characteristics as independent variables directly affecting the rates should be considered.
Communications for Statistical Applications and Methods
/
제19권4호
/
pp.537-546
/
2012
In this paper, for analyzing binary data, Poisson regression with offset and logistic regression are compared with respect to the power via simulations. Poisson distribution can be used as an approximation of binomial distribution when n is large and p is small; however, we investigate if the same conditions can be held for the power of significant tests between logistic regression and offset poisson regression. The result is that when offset size is large for rare events offset poisson regression has a similar power to logistic regression, but it has an acceptable power even with a moderate prevalence rate. However, with a small offset size (< 10), offset poisson regression should be used with caution for rare events or common events. These results would be good guidelines for users who want to use offset poisson regression models for binary data.
공사감리문서는 프로젝트의 수행과정을 제3의 독립적인 위치에서 모니터링한 종합적인 점검의견이라는 주요한 비정형 정보를 제공할 수 있다. 이와 같은 비정형 정보는 최근 분석방법론의 고도화에 따라 다양한 시사점을 제공할 수 있는 유의미한 자료로 평가받고 있다. 이에 본 연구는 건축공사의 최종 감리보고서 내 비정형 데이터를 대상으로 다양한 방법론을 활용하여 비용성과를 평가할 수 있는 프레임워크를 제시하였다. 세부적으로는 텍스트마이닝과 사회연결망분석을 통해 감리보고서 내 주요 키워드들을 도출하고, 해당 데이터들을 이항 로지스틱 회귀분석을 통해 분석하여 비용성과를 평가하였다. 그 결과, 감리보고서 내 비정형 데이터를 이용하여 추정된 비용성과 예측 정확도는 약 73% 수준으로 높게 도출되었다. 본 연구의 결과는 향후 건설산업에서 발생되는 다양한 비정형 데이터의 분석을 위한 기초자료로 활용이 가능할 것으로 예상된다.
This paper aims to predict Busan's regional product and employment using the logistic regression models and machine learning models. The following are the main findings of the empirical analysis. First, the OLS regression model shows that the main industries such as electricity and electronics, machine and transport, and finance and insurance affect the Busan's income positively. Second, the binomial logistic regression models show that the Busan's strategic industries such as the future transport machinery, life-care, and smart marine industries contribute on the Busan's income in large order. Third, the multinomial logistic regression models show that the Korea's main industries such as the precise machinery, transport equipment, and machinery influence the Busan's economy positively. And Korea's exports and the depreciation can affect Busan's economy more positively at the higher employment level. Fourth, the voting ensemble model show the higher predictive power than artificial neural network model and support vector machine models. Furthermore, the gradient boosting model and the random forest show the higher predictive power than the voting model in large order.
Objective: This study aimed to examine parenting education participation of Korean mothers in the transition to parenthood and its related variables. Method: A study sample was composed of 870 mothers whose first child was younger than one-year old from the Panel Study on Korean Children in 2008(mean age=30.1, SD = 3.69). The descriptive statistics of parenting education participation were presented. In addition, negative binomial and logistic regression models were used in Stata13 in order to examine the variables related to parenting education participation of mothers in the transition to parenthood. Results: Approximately 82% of the mothers reported that they had participated in at least one parenting education program. Further, mother's educational level, monthly household income, mother's working experience, and community type generally predicted parenting education participation of mothers. However, the effects of these variables varied by the subjects and the providing institutions. Conclusion: This study provides the overall picture of parenting education participation of Korean mothers in the transition to parenthood and its related variables. The findings can be utilized to plan more effective parenting education programs for new parents.
Journal of the Korean Data and Information Science Society
/
제21권1호
/
pp.21-32
/
2010
그래픽적 회귀는 모형에 대한 가정을 하지 않고 회귀정보를 모두 포함하는 충분요약그림을 찾아내는 분석 방법으로 모든 회귀정보를 저차원의 그림으로 표현할 수 있게 하는 데에 그 목적이 있다. 잔차산점도를 이용한 모형의 평가는 적용 범위가 선형회귀모형에 국한되는 문제점이 있기 때문에 일반화선형모형에서는 그 대안으로 주변모형 산점도를 이용하여 모형의 적절성을 평가한다. 본 논문에서는 일반화선형모형 중에서 이진반응변수를 갖는 로지스틱모형에서의 그래픽적 회귀 방법과 주변모형 산점도를 이용한 모형평가 방법을 알아본다.
The purpose of this study is to analyze the effects of abolishing the low-pesticide agricultural product certification on environmentally friendly farming. A survey was conducted to quantitatively analyze farming practices and factors that change farming practice. It was found that only 17.0% of low-pesticide fruit farmers said that they will change their farming practice into organic or pesticide-free farming. With regard to the factors of farming practice change, binomial logistic regression model was applied for the analysis. In the analysis, it was found that farmers who grow the low-pesticide agricultural product are more likely to change their farming practice into organic or pesticide-free farming, as their expected price of organic or pesticide-free products is high, their area size is small, price premium of low-pesticide agricultural product is low, the frequency of their training is high. It is necessary to enhance the direct payment system to enlarge organic and nonpesticide acreage, and pest management techniques for fruits should be developed for low-pesticide fruit farmers to change their practice into organic and nonpesticide practice. Dissemination of cultivation manual, introduction of insurance to farmers, improvement of certificate system, and advertising and marketing of environment-friendly agricultural products are useful to develop environment-friendly agriculture.
Purpose: This study was conducted to identify risk factors that influence the probability and severity of elder abuse in community-dwelling older adults. Methods: This study was a cross-sectional descriptive study. Self-report questionnaires were used to collect data from community-dwelling Koreans, 65 and older (N=416). Logistic regression, negative binomial regression and zero-inflated negative binomial regression model for abuse count data were utilized to determine risk factors for elder abuse. Results: The rate of older adults who experienced any one category of abuse was 32.5%. By zero-inflated negative binomial regression analysis, the experience of verbal-psychological abuse was associated with marital status and family support, while the experience of physical abuse was associated with self-esteem, perceived economic stress and family support. Family support was found to be a salient risk factor of probability of abuse in both verbal-psychological and physical abuse. Self-esteem was found to be a salient risk factor of probability and severity of abuse in physical abuse alone. Conclusion: The findings suggest that tailored prevention and intervention considering both types of elder abuse and target populations might be beneficial for preventative efficiency of elder abuse.
Journal of the Korean Data and Information Science Society
/
제24권6호
/
pp.1465-1475
/
2013
The chi-square type test statistic is the most commonly used test in terms of measuring testing goodness-of-fit for multinomial logistic regression model, which has its grouped data (binomial data) and ungrouped (binary) data classified by a covariate pattern. Chi-square type statistic is not a satisfactory gauge, however, because the ungrouped Pearson chi-square statistic does not adhere well to the chi-square statistic and the ungrouped Pearson chi-square statistic is also not a satisfactory form of measurement in itself. Currently, goodness-of-fit in the ordinal setting is often assessed using the Pearson chi-square statistic and deviance tests. These tests involve creating a contingency table in which rows consist of all possible cross-classifications of the model covariates, and columns consist of the levels of the ordinal response. I examined goodness-of-fit tests for a proportional odds logistic regression model-the most commonly used regression model for an ordinal response variable. Using a simulation study, I investigated the distribution and power properties of this test and compared these with those of three other goodness-of-fit tests. The new test had lower power than the existing tests; however, it was able to detect a greater number of the different types of lack of fit considered in this study. I illustrated the ability of the tests to detect lack of fit using a study of aftercare decisions for psychiatrically hospitalized adolescents.
0의 값을 과도하게 포함하는 가산자료는 다양한 연구 분야에서 흔히 나타난다. 영과잉 모형은 영과잉 가산자료를 분석하기 위해 가장 일반적으로 사용되는 모형이다. 영과잉 모형에 대한 전통적인 베이지안 추론은 조건부 사후분포의 형태가 폐쇄형 분포로 나타나지 않아 모형 적합 과정이 용이하지 않다는 한계점이 존재했다. 그러나 최근 Pillow와 Scott (2012)과 Polson 등 (2013)이 제안한 폴랴-감마 자료확대전략으로 인해, 로지스틱 회귀모형과 음이항 회귀모형에서 깁스 샘플링을 통한 추론이 가능해지면서, 영과잉 모형에 대한 베이지안 추론이 용이해졌다. 본 논문에서는 베이지안 추론에 기반한 영과잉 음이항 회귀모형을 Min과 Agresti(2005)에서 분석된 약학 연구 자료에 적용해본다. 분석에 사용된 자료는 경시적 영과잉 가산자료로 복잡한 자료 구조를 가지고 있다. 모형 적합 과정에서는 깁스 샘플링을 통한 추론을 수행하기 위해 폴랴-감마 자료확대전략을 사용한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.