• Title/Summary/Keyword: Bingham fluids

Search Result 51, Processing Time 0.027 seconds

Investigation of Mechanical Characteristics of ER Fluids for Application in Hydraulic Valve (유압밸브 적용을 위한 ER 유체의 역학적 특성 고찰)

  • 김옥삼;이현창;박우철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.84-90
    • /
    • 2001
  • The electro-reheoligical(ER) effect refers to the abrupt change in viscosity in certain suspensions on application of an electric field. This paper presents experimental results on material properties of an ER fluids subjected to electrical fatigues. As a first step, two types of EF fluids are made of arabic gum and methyl cellulose(MC) choosing 25% of parti-cle weight-concentration. Following the construction of test mechanism for electrical durability of ER fluid, the dynamic yield shear stress and current density of the ER fluids are experimentally distilled as a function of electric field. The yield shear stress of operated ER fluids are distilled and compared with those of unused ER fluids.

  • PDF

Experimental Investigation on the Flow Characteristics of ER Fluids III (3nd Report, Flow-Pressure Drop Characteristics clearance between Two Parallel Plate) (ER유체의 유동특성에 관한 실험적 연구 III (평행평판 간극내의 유량-압려강하 특성))

  • 김도태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.399-404
    • /
    • 1999
  • Electro-rheological(ER) fluids are suspensions which show an abrupt increase in rheological properties under electric fields. The rheological response is very rapid and reversible when the electric field is imposed and/or removed. Therefore, there are many practical applications using the ER fluids. The purpose of the present study is to examine the flow characteristics of electro-rheological fluids. The field-dependent yield stress are obtained from experimental investigation on the Bingham property of the ER fluid. Then the steady relationshup between pressure drop and flow rate of the ERF was two fixed parallel-plates was measured under application of an electric fields. The electrical and rheological properties of zeolite based electro-rheological fluids were reported.

  • PDF

Performance Analysis of Smart Impact Damper (지능형 완충기의 특성 해석)

  • ;;Y.T. Choi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.323-327
    • /
    • 2001
  • Electrorheological(ER) and magnetorheological(MR) fluids have a unique ability to increase the dynamic yield stress of the fluid substantially when electric or magnetic field is applied. Controllable fluids such as ER and MR fluids have received considerable attention as several components of engineering devices. One of them is a smart impact damper using ER/MR fluids. Impact damper system can be used in the joint mechanism of railroad vehicle, protection equipment of elevator's drop, and launch equipment of aircraft. This paper presents the results of an analytical study of the performance of a smart impact damper to suppress vibration during impact excitation. The damping capabilities of MR impact damper for variable applied current are analyzed using Bingham model under sudden impact load.

  • PDF

Characteristic Experiment of a Hydraulic Control Valve by Using Electro-Rheological Fluid (ERF를 이용한 유압제어밸브의 특성실험)

  • Kim, Dong-Su;Park, Jae-Beom;Jang, Seong-Cheol
    • 연구논문집
    • /
    • s.30
    • /
    • pp.93-99
    • /
    • 2000
  • Electro-Rheological(ER) fluids change their apparent viscosity according to the electric field strength. The electrical and rheological properties of zeolite based the ER fluids were reported. The electric field dependent yield stress are obtained from experimental investigation on the Bingham property of the ER fluid. Using ER fluids, it is possible to directly interface between electric drop and flow rate of the ER fluid was hydraulic control valve measured under application of an electric field. The purpose of the present study is pressure drop measurement of an ER valve by using strain gage. The performance characteristics of the valve system are evalusted in terms of pressrue fixed with respect to the intensity of employed electric fields and flow rates. As a result, it is esperimentally confirmed that pressure control valve using ER fluids applicable to use in hydraulic power systems.

  • PDF

Theoretical Approximate Solutions for Electrorheological Short Squeeze Film Dampers (무한 소폭 전기유변 스퀴즈 필름 댐퍼에 관한 이론적 근사해)

  • 정시영;최상규;강덕형
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.60-67
    • /
    • 1997
  • ER(electro-rheological) fluids, which are represented as Bingham fluids, have large and reversible changes in yield shear stresses by application of an electric field. In this paper, ER fluids are employed in a short squeeze film damper. The modified Reynolds equation for an ER short squeeze film damper is theoretically solved to get the approximate solutions of pressure profiles and damping coefficients. The theoretical approximate solutions are compared with numerical ones and both results are coincided very well. Both the direct and cross coupled damping coefficients substantially increase with increasing the yield shear stress of ER fluids. Furthermore, the synchronous response analysis of a rigid rotor supported on ER short squeeze film dampers is performed to show the improved damping capability of an ER short squeeze film damper.

Control of Automatic Cargo Handling System Using ER Valves (I) -Modeling of ER Valves- (ER밸브를 이용한 자동 하역 시스템의 제어 (I) -ER밸브의 모델링-)

  • Sung, Kum-Kil;Chung, Dar-Do;Choi, Seung-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.45-52
    • /
    • 2001
  • This paper presents two different models of electrorheological(ER) valves which can be applicable to an automatic cargo handling system at the seaport. Four different ER fluids, which are commercially available, are adopted and their Bingham characteristics are experimentally evaluated with respect to the intensity of electric field. The field-dependent Bingham models are used in the design of two types of ER valves; single-type and divided-type. The governing equations of motion of the ER valves are derived and the principal design parameters are determined based on 200ton platform to be vertically controlled by the ER valves. Both pressure drops due to the applied field and current density required to operate the ER valves are analyzed. In addition, the pressure drops of the cylinder system are evaluated for both ER valves.

  • PDF

Electrical and Rheological Behavior of the Anhydrous ER Fluids Based on Chitosan Derivatives as the Dispersion Phases

  • Choi Ung-su;Sung Bo-hyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.323-329
    • /
    • 2004
  • The electrical and rheological properties pertaining to the electrorheological (ER) behavior of chitosan derivatives, chitosan, chitosan ammonium salt and chitosan phosphate suspensions in silicone oil were investigated. Chitosan derivative suspensions showed a typical ER response (Bingham flow behavior) upon application of an electric field. However, chitosan phosphate suspension exhibited an excellent shear yield stress compared with chitosan and chitosan ammonium salt suspensions. The difference in behavior results from the difference in the conductivity of the disperse phases due to the difference of their polarizability. The shear stress for the chitosan, chitosan ammonium salt and chitosan phosphate suspensions exhibited a linear dependence on the volume fraction of particles and 1.18 ,1.41 and 1.67 powers of the electric field. On the basis of the experimental results, the newly synthesized chitosan derivative suspensions found to be an ER fluid.

  • PDF

Electrical and Rheological Behavior of the Angydrous ER Fluids Based on Chitosan Derviatives as the Dispersion Phases

  • Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.5 no.2
    • /
    • pp.49-51
    • /
    • 2004
  • The electrical and rheological properties pertaining to the electrorheological (ER) behavior of chitosan derivatives, chitosan, chitosan ammonium salt and chitosan phosphated suspensions in silicone oil were investigated. Chitosan derivative suspensions showed a typical ER response (Bingham flow behavior) upon application of an electric field. However, chitosan phosphate suspension exhibited an excellent shear yield stress compared with chitosan and chitosan ammonium salt suspensions. The difference in behavior results from the difference in the conductivity of the disperse phases due to the difference of their polarizability. The shear stress for the chitosan, chitosan ammonium salt and chitosan phosphate suspensions exhibited a linear dependence on the volume fraction of particles and 1.18, 1.41 and 1.67 powers of the electric field. On athe basis of the experimental results, the newly synthesized chitosan dervative suspensions found to be an ER fluid.

Quasi-Steady Damping Force of Electro- and magneto-Rheo logical Flow Mode Dampers using Herschel-Bulkley Model (Herschel-Bulkley 모델에 의한 전기 및 자기장 유체 댐퍼의 준안정 상태 댐핑력 해석)

  • Lee, Dug-Young;Hwang, Woo-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1298-1302
    • /
    • 2000
  • Electrorheological(HER) and magnetorheologica(MR) fluids have a unique ability to increase the dynamic yield stress of the fluid substantially when electric or magnetic field is applied. ER and MR fluid-based dampers are typically analyzed using Bingham-plastic shear flow analysis under Quasi-steady fully developed flow conditions. An alternative perspective, supported by measurements reported in the literature, is to allow for post-yield shear thinning and shear thickening. To model these, the constant post-yield plastic viscosity in Bingham model can be replaced with a power-law model dependent on shear strain rate that is known as the Herschel-Bulkley fluid model. The objective of this paper is to predict the damping forces analytically in a typical ER bypass damper for variable electric field, or yield stress using Herschel-Bulkley analysis.

  • PDF

Performance Investigation of a Brake System Featuring Electro-Rheological Fluids (전기유동유체를 이용한 브레이크 시스템의 성능 고찰)

  • Kim, G.W.;Park, W.C.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.123-130
    • /
    • 1995
  • This study presents model synthesis and performance investigation of a new brake system using electro-rheological(ER) fluids. Field-dependent Bingham properties characterized by non-zero yield stresses of the ER fluids are experimentally distilled. These properties are then incorporated with the governing equation of the proposed brake system which features design simplicity, fast response and salient controllability. After analyzing system performance with respect to design parameters such as electrode gap and length, an appropriate size of the brake is designed and fabricated. Both simulation and experimental works are undertaken in order to determine the feasibility and efficiency of the proposed brake system. The system performances are justified by evaluating field-dependent braking torques as well as braking times.

  • PDF