• Title/Summary/Keyword: Binder treatment

Search Result 196, Processing Time 0.028 seconds

A Study on the E-textiles Dip-Coated with Electrically Conductive Hybrid Nano-Structures

  • Lee, Euna;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.21 no.6
    • /
    • pp.16-30
    • /
    • 2017
  • Currently, e-textile market is rapidly expanding and the emerging area of e-textiles requires electrically conductive threads for diverse applications, including wearable innovative e-textiles that can transmit/receive and display data with a variety of functions. This study introduces hybrid nano-structures which may help increase the conductivity of the textile threads for use in wearable and flexible smart apparels. For this aim, Ag was selected as a conductive material, and yarn treatment was implemented where silver nanowire (AgNW) and graphene flake (GF) hybrid structures overcome the limitations of the AgNW alone. The yarn treatment includes several treatment conditions, e.g., annealing temperature, annealing time, binder material such as polyurethane (PU), coating time, in order to search for the optimum method to form stable conductive nano-scale composite materials as thin film on the surface of textile yarns. Treatedyarns showed improved electrical resistance readings. The functionality of the spandex yarn as a stretchable conductive thread was also demonstrated. When the yarn specimens were treated with colloid of AgNW/GF, relatively good electrical conductivity value was obtained. During the extension and recovery cycles of the treated yarns, the initial resistance values did not deteriorate significantly, since the network of nanowire structure with the support of GF and polyurethane stayed flexible and stable. Through this research, it was found that when one-dimensional structure of AgNW and two-dimensional structure of GF were mixed as colloids and treated on the surface of textile yarns, flexible and stretchable electrical conductor could be formed.

Study of Conversion of Waste LFP Battery into Soluble Lithium through Heat Treatment and Mechanochemical Treatment (열처리 및 기계화학적 처리를 통한 폐LFP 배터리로부터 가용성 리튬으로의 전환 연구)

  • Boram Kim;Hee-Seon Kim;Dae-Weon Kim
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.21-29
    • /
    • 2024
  • Globally, the demand for electric vehicles (EVs) is surging due to carbon-neutral strategies aimed at decarbonization. Consequently, the demand for lithium-ion batteries, which are essential components of EVs, is also rising, leading to an increase in the generation of spent batteries. This has prompted research into the recycling of spent batteries to recover valuable metals. In this study, we aimed to selectively leach and recover lithium from the cathode material of spent LFP batteries. To enhance the reaction surface area and reactivity, the binder in the cathode material powder was removed, and the material was subjected to heat treatment in both atmospheric and nitrogen environments across various temperature ranges. This was followed by a mechanochemical process for aqueous leaching. Initially, after heat treatment, the powder was converted into a soluble lithium compound using sodium persulfate (Na2S2O8) in a mechanochemical reaction. Subsequently, aqueous leaching was performed using distilled water. This study confirmed the changes in the characteristics of the cathode material powder due to heat treatment. The final heat treatment in a nitrogen atmosphere resulted in a lithium leaching efficiency of approximately 100% across all temperature ranges.

LTCC기판상에 성장시킨 PZT박막의 열처리 특성연구

  • Lee, Gyeong-Cheon;Hwang, Hyeon-Seok;U, Hyeong-Gwan;Lee, Tae-Yong;Heo, Won-Yeong;Sim, Deung;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.117-117
    • /
    • 2009
  • Recently, low temperature co-fired ceramic (LTCC) technology has gained a remarkable application potential in sensors, actuators and microsystems fields. In this study, we investigated the effects of annealing treatment on the electrical properties of $Pb(ZrTi)O_3$ (PZT) thin films deposited on LTCC substrate. The LTCC substrates with thickness of 400 ${\mu}m$ were fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The PZT thin films were deposited on Au/LTCC substrates by RF magnetron sputtering method. Then, the change of the crystallization of the films was investigated under various annealing temperatures. The results showed that the crystallization of the films were enhanced as increasing annealing temperatures. The film, annealed at $700^{\circ}C$, 3min, was well crystallized in the ferovskite structure. The structural variation of the films were analyzed by using X-Ray diffraction (XRD) and field emmision scanning electron microscopy (FESEM).

  • PDF

Fracture Properties of Nuclear Graphite Grade IG-110 (원자로용급 흑연인 IG-110의 파괴특성)

  • Han, Dong-Yun;Kim, Eung-Sun;Chi, Se-Hwan;Lim, Yun-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.439-444
    • /
    • 2006
  • Artificial graphite generally manufactured by carbonization sintering of shape-body of kneaded mixture using granular cokes as filler and pitch as binder, going through pitch impregnation process if necessary and finally applying graphitization heat treatment. Graphite materials are used for core internal structural components of the High-Temperature Gas-cooled Reactors (HTGR) because of their excellent heat resistibility and resistance of crack progress. The HTGR has a core consisting of an array of stacked graphite fuel blocks are machined from IG-110, a high-strength, fine-grained isotropic graphite. In this study, crack stabilization and micro-structures were measured by bend strength and fracture toughness of isotropic graphite grade IG-110. It is important to the reactor designer as they may govern the life of the graphite components and hence the life of the reactor. It was resulted crack propagation, bend strength, compressive strength and micro-structures of IG-110 graphite by scanning electron microscope and universal test machine.

Metal Injection Molding of Nanostructured W-Cu Composite Powders Prepared by Mechanical Alloying (기계적 합금방법으로 제조한 극초미세 조직의 W-Cu 복합분말의 금속사출성형 연구)

  • 김진천
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.145-153
    • /
    • 1998
  • W-Cu alloy is attractive to thermal managing materials in microelectronic devices because of its good thermal properties. The metal injection molding (MIM) of W-Cu systems can satisfy the need for mass production of the complex shaped W-Cu parts in semiconductor devices. In this study, the application of MIM process of the mechanically alloyed (MA) W-Cu composite powders, which had higher sinterability were investigated. The MA W-Cu powders and reduction treated (RT) powders were injected by using of the multicomponent binder system. The multi-stage debinding cycles were adopted in $N_2$ and $H_2$ atmosphere. The isostatic repressing treatment was carried out in order to improve the relative density of brown parts. The brown part of RT W-Cu composite powder sintered at 110$0^{\circ}C$ had shown the higher sinterability compared to that of MA powder. The relative sintered density of all specimens increased to 96% by sintering at 120$0^{\circ}C$ for 1 hour. The relationship between green density and the sintering behavior of MA W-Cu composite powder was analyzed and discussed on the basis of the nanostructured characteristics of the MA W-Cu composite powder.

  • PDF

Bacterial Sporulation and germination of Biocontrol agent Bacilus subtilis YBL-7 (항진균성 길항세균 Bacillus subtilis YBL-7의 종자피막용 포자체의 생산과 발아조건)

  • 장종원;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.236-242
    • /
    • 1995
  • Biological control of soilborne plant pathogens by the addition of antagonistic microorganisms to the soil may offer a practical supplement or alternative to existing disease management strategies that depend heavily on chemical pesticides. Soil amendment with antagonistic microbes was non-effective because of high cost, low efficacy, and inconvenient usage on the treatment course. Therefore, seed coating formulation for the application of biological seed treatments has been being to apply successful disease suppression for many important crops. The objectives of this study were to investigate the optimal condition for the spore production of biocontrol agent Bacillus subtilis YBL-7 and the liquid coating formulation that contained a suspension of a proper aqueous binder, as well as a ground fine solid particulate material. The maximum yield has been obtained from 60 hrs-old culture at 30$\circ$C in spore forming (SF) medium containing 0.8% nutrient broth, 0.05% yeast extract, 10$^{-1}$ M MgCl$^{2}$, 10$^{-4}$ M MnCl$^{2}$, 10$^{-5}$ M dipicolinic acid, and pH 6.5. The optimal condition of dried spore preparation was achieved when cells of B. subtilis YBL-7 was heat-dried with 50$\circ$C for 2 hrs.

  • PDF

Preparation and Properties of ρ-alumina Bonded Alumina Vibrated Castable Refractory (진동성형용 ρ-알루미나결합 알루미나 캐스터블 내화재료의 제조와 특성)

  • 천승호;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.791-797
    • /
    • 2003
  • The special binding mechanism developed provides higher density, lower porosity and higher strengths compared with conventional castables. $\rho$-alumina was employed as a binder materials and nano-sized clay colloidal was added to enhance the drying strength preparing for the alumina vibrated castable. Lower water requirement for casting results in a denser product. The mechanical properties with dimensional stability and corrosion resistance behaviors have been improved by controlling the matrix compositions of the castable. The modulus of rupture and compressive strength after heat treatment at 150$0^{\circ}C$ are 92.34 kgf/$\textrm{cm}^2$ and 370 kgf/$\textrm{cm}^2$ respectively. The activation energy of mullite formation is 11.47 kcal/mol.

Carbon nanotube / silane hybride film for highly efficient field emitter

  • Jeong, Hae-Deuk;Kim, Ho-Young;Jeong, Hee-Jin;Han, Joong-Tark;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.181-181
    • /
    • 2010
  • Few-walled carbon nanotubes (FWNTs)-based field emitters with long term stability are fabricated by using a spray method. Tetraethylorthosilicate (TEOS) sol as a binder was mixed with dispersed solution of FWNTs to enhance the adhesion of FWNTs on the cathode substrate. Due to the strong intermolecular interaction of TEOS to the functional groups attached on CNTs and substrate, CNTs are tightly adhered to the cathode electrode when heat treatment is performed at $150^{\circ}C$ for 1 hour, resulting in a stable electron emission of CNT emitters for long time. Excellent field emission characteristics were exhibited, with a large field enhancement factor and low turn-on voltage, comparable to those of CNT emitters fabricated by a screen printing of CNT paste. Therefore, FWNTs / TEOS hybrid films could be utilized as an alternative for the efficient and reliable field emitters.

  • PDF

Effects of annealing under oxygen atmosphere of PZT thin films on LTCC substrates (LTCC 기판위에 성장시킨 PZT 박막의 열처리시 $O_2$가 미치는 영향)

  • Lee, Kyung-Chun;Hur, Won-Young;Hwang, Hyun-Suk;Lee, Tae-Yong;Lee, Jong-Duk;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.205-205
    • /
    • 2010
  • Recently, low temperature co-fired ceramic (LTCC) technology is widely used in sensors, actuators and microsystem fields because of its very good electrical and mechanical properties, high stability as well as possibility of making 3D micro structures. In this study, we investigated the effects of on $O_2$ annealing treatment on the electrical properties of Pb(ZrTi)$O_3$ (PZT) thin films deposited on LTCC substrate. The LTCC substrates with thickness of $400\;{\mu}m$ were fabricated by laminating 4 green tapes which consist of alumina and glass particle in an organic binder. The PZT thin films were deposited on Au / LTCC substrates by RF magnetron sputtering method. The change of the crystallization of the films were investigated under various atmosphere. The structural variation of the films were analyzed by using X-Ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) and secondary ion mass spectrometry (SIMS).

  • PDF

Electrochemical Properties of Manganese Oxide coated onto Carbon Nanotubes for Energy Storage Applications (보조에너지원으로서의 수퍼커패시터용 나노전극소재로서의 탄소/망간산화물의 전기화학적 특성)

  • Ahn, Kyun-Young;Ma, Sang-Bok;Kim, Kwang-Bum
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.143-146
    • /
    • 2007
  • Birnessite-type manganese dioxide($MnO_2$) was coated uniformly onto carbon nanotubes (CNTs) through a spontaneous direct redox reaction between CNTs and permanganate ions($MnO_4\;^-$). The initial specific capacitance of the $MnO_2/CNT$ nanocomposite in an organic electrolyte at a large current density of 1 A/g was 250 F/g, which is equivalent to 139 mAh/g based on the total weight of the electrode material including the electroactive material, conducting agent and binder. The specific capacitance of the $MnO_2$ in the $MnO_2/CNT$ nanocomposite was as high as 580 F/g (320 mAh/g), indicating excellent electrochemical utilization of the $MnO_2$. The addition of CNTs as a conducting agent can improve the high rate capability of $MnO_2/CNT$ nanocomposite considerably. An analysis of the in-situ X-ray absorption near-edge structure (XANES) showed an improvement in the structural and electrochemical reversibility of the $MnO_2/CNT$ nanocomposite by heat-treatment.

  • PDF