• Title/Summary/Keyword: Binary Pulse Amplitude Modulation

Search Result 18, Processing Time 0.018 seconds

Unipodal 2PAM NOMA without SIC: toward Super Ultra-Low Latency 6G

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.69-81
    • /
    • 2021
  • While the fifth generation (5G) and beyond 5G (B5G) mobile communication networks are being rolled over the globe, several world-wide companies have already started to prepare the sixth generation (6G). Such 6G mobile networks targets ultra-reliable low-latency communication (URLLC). In this paper, we challenge to reduce the inherent latency of existing non-orthogonal multiple access (NOMA) in 5G networks of massive connectivity. First, we propose the novel unipodal binary pulse amplitude modulation (2PAM) NOMA, especially without SIC, which greatly reduce the latency in existing NOMA. Then, the achievable data rates for the unipodal 2PAM NOMA are derived. It is shown that for unequal gain channels, the sum rate of the unipodal 2PAM NOMA is comparable to that of the standard 2PAM NOMA, whereas for equal gain channels, the sum rate of the unipodal 2PAM NOMA is superior to that of the standard 2PAM NOMA. In result, the unipodal 2PAM could be a promising modulation scheme for NOMA systems toward 6G.

Error Performance Analysis of 2PAM-TH-UWB Systems with Receive Diversity in Multipath channels (다중경로 채널환경에서 수신 다이버시티를 이용하는 2PAM-TH-UWB 시스템의 오류 성능 분석)

  • Baek, Sun-Young;Kang, Yun-Jeong;Kim, Saug-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.111-112
    • /
    • 2008
  • 본 논문에서는 다중경로가 무수히 많은 환경에서 다중안테나를 이용하여 고속의 데이터 전송률을 달성하기 위한 초광대역(UWB: Ultra-Wideband) 시스템의 성능 향상에 대해 연구한다. 다중 수신안테나가 제공하는 공간다이버시티와 RAKE 수신기가 제공하는 시간 다이버시티가 2PAM(Binary Pulse Amplitude Modulation) TH(Time Hopping) UWB 통신 시스템의 성능에 미치는 영향을 분석한다. 시뮬레이션 결과를 통해 다중수신안테나의 수가 증가함에 따라 TH-UWB 시스템의 BER(Bit Error Rate) 성능이 크게 향상됨을 보인다. 또한 SRAKE(Selective RAKE)에 의해 선택되는 다중경로 성분의 수가 증가할수록 시스템의 성능이 더욱 향상 됨을 확인한다.

  • PDF

Analysis on Achievable Data Rate of Asymmetric 2PAM for NOMA

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.34-41
    • /
    • 2020
  • Nowadays, the advanced smart convergences of the artificial intelligence (AI) and the internet of things (IoT) have been more and more important, in the fifth generation (5G) and beyond 5G (B5G) mobile communication. In 5G and B5G mobile networks, non-orthogonal multiple access (NOMA) has been extensively investigated as one of the most promising multiple access (MA) technologies. In this paper, we investigate the achievable data rate for the asymmetric binary pulse amplitude modulation (2PAM), in non-orthogonal multiple access (NOMA). First, we derive the closed-form expression for the achievable data rate of the asymmetric 2PAM NOMA. Then it is shown that the achievable data rate of the asymmetric 2PAM NOMA reduces for the stronger channel user over the entire range of power allocation, whereas the achievable data rate of the asymmetric 2PAM NOMA increases for the weaker channel user improves over the power allocation range less than 50%. We also show that the sum rate of the asymmetric 2PAM NOMA is larger than that of the conventional standard 2PAM NOMA, over the power allocation range larger than 25%. In result, the asymmetric 2PAM could be a promising modulation scheme for NOMA of 5G systems, with the proper power allocation.

The BER Performance Analysis of UWB System in Multipath Channel (다중 경로 채널에서 초광대역(UWB) 시스템의 BER 성능 분석)

  • Jung, Hyang;Kim, Eon-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.133-136
    • /
    • 2003
  • UWB(Ultra-Wide Band) system is transmitted using Gaussian monocycle pulse of very short pulse duration less than 1 nsec. Therefore, transmission signal has ultra-wide band spectrum to GHz band of very low power and not interfere with the existing communication system. A collision of multipath waves in UWB system with tarrier frequency very different with general wireless communication system. In this paper, the BER(Bit Error Rate) performance of UWB system applying Binary Phase Shift Keying, Quadrature Phase Shift Keying, 16-Quadrature Amplitude Modulation method under multipath channel using computer simulation is compared and analyzed.

  • PDF

On Calculation of Total Power and Allocation for Achieving Near 1+1 Capacity Region of 2PAM NOMA in 5G Networks (5G 네트워크에서 비직교 다중 접속 2PAM의 근접 1+1 용량 영역 달성을 위한 총 전력과 할당의 계산)

  • Chung, Kyuhyuk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.9-16
    • /
    • 2021
  • In binary-modulation non-orthogonal multiple access (NOMA), there has been rare researches for the 1+1 capacity region to be achieved; how much total power is required and what power allocation is assigned for this total power. In this paper, the average total transmitted power to achieve 1+1 capacity region of binary pulse amplitude modulation (2PAM) NOMA is investigated, with a tolerable loss. Then, based on the sufficient average total transmitted power, we calculate the power allocation coefficient to achieve 1+1 capacity region. Furthermore, it is shown by numerical results that with the tolerable loss less than 0.008, near 1+1 capacity region is achieved. We also calculate numerically the power allocation coefficient for both users to achieve near 1+1 capacity region. As a result, for 2PAM NOMA to operate near 1+1 capacity region, proper total power with appropriate power allocation could be calculated in design of NOMA systems.

Near-BER lossless Asymmetric 2PAM non-SIC NOMA with Low-Complexity and Low-Latency under User-Fairness

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.43-51
    • /
    • 2021
  • As the number of mobile devices has been increasing tremendously, system capacity should be enlarged in future next generation communication, such as the fifth-generation (5G) and beyond 5G (B5G) mobile networks. For such future networks, non-orthogonal multiple access (NOMA) has been considered as promising multiple access technology. In this paper, to reduce both latency and complexity in existing NOMA, we propose non-successive interference cancellation (SIC) NOMA with asymmetric binary pulse amplitude modulation (2PAM), nearly without bit-error rate (BER) loss. First, we derive the closed form of BER expressions for non-SIC NOMA with asymmetric 2PAM, especially under Rayleigh fading channels. Then, it is shown that the BER performance of the stronger channel user who is supposed to perform SIC in conventional NOMA can be nearly achieved by the proposed non-SIC NOMA with asymmetric 2PAM, especially without SIC. Furthermore, we also show that the BER performance of the weaker channel user in conventional NOMA can be more closely achieved by the proposed non-SIC NOMA with asymmetric 2PAM. These BERs are shown to be achieved over the part of the power allocation range, which is consistent with the NOMA principle of user fairness. As a result, the non-SIC NOMA scheme with asymmetric 2PAM could be considered as a promising NOMA scheme toward next generation communication.

Non-interfering Non-orthogonal Multiple Access: With Application to Improving BER of Weakest Channel User in 3-User 2PAM (비간섭 비직교 다중접속: 삼중 2PAM의 최약 채널 사용자의 BER 향상 관점에서)

  • Chung, Kyu-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.585-590
    • /
    • 2021
  • This paper proposes a 3-user non-interfering binary pulse amplitude modulation(2PAM) and non-orthogonal multiple access(NOMA) scheme, to improve the bit-error rate(BER) performance of the weakest channel user with the tolerable BER loss of the stronger channel users. First, we design the 3-user non-interfering 2PAM NOMA, and then derive the closed-form expressions for the BERs of the proposed scheme. Numerical results are also presented to demonstrate that the BER of the weakest channel user improves greatly, with the small BER losses of the stronger channel users. As a result, the non-interfering 2PAM could be considered in NOMA of 5G systems.

On Design and Performance Analysis of Asymmetric 2PAM: 5G Network NOMA Perspective (비대칭 2PAM의 설계와 성능 분석: 5G 네트워크의 비직교 다중 접속 관점에서)

  • Chung, Kyuhyuk
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.24-31
    • /
    • 2020
  • In non-orthogonal multiple access (NOMA), the degraded performance of the weaker channel gain user is a problem. In this paper, we propose the asymmetric binary pulse amplitude modulation (2PAM), to improve the bit-error rate (BER) performance of the weaker channel user in NOMA with the tolerable BER loss of the stronger channel user. First, we design the asymmetric 2PAM, calculate the total allocated power, and derive the closed-form expression for the BER of the proposed scheme. Then it is shown that the BER of the weaker channel user improves, with the small BER loss of the stronger channel user. The superiority of the proposed scheme is also validated by demonstating that the signal-to-noise ratio (SNR) gain of the weaker channel user is about 10 dB, with the SNR loss of 3 dB of the stronger channel user. In result, the asymmetric 2PAM could be considered in NOMA of 5G systems. As a direction of the future research, it would be meaningful to analyze the achievable data rate for the propsed scheme.