• 제목/요약/키워드: Bilateral teleoperation

검색결과 39건 처리시간 0.026초

시변 시간지연 하에서 안정성을 보장하는 양방향 원격제어기 : 시간영역 수동성 기법 (Bilateral Controller for Time-varying Communication Delay: Time Domain Passivity Approach)

  • 유지환
    • 제어로봇시스템학회논문지
    • /
    • 제13권11호
    • /
    • pp.1099-1105
    • /
    • 2007
  • In this paper, modified two-port time-domain passivity approach is proposed for stable bilateral control of teleoperators under time-varying communication delay. We separate input and output energy at each port of a bilateral controller, and propose a sufficient condition for satisfying the passivity of the bilateral controller including time-delay. Output energy at the master port should be less than the transmitted input energy from the slave port with time-delay, and output energy at the slave port should be less than the transmitted input energy from the master port with time-delay. For satisfying above two conditions, two passivity controllers are attached at each port of the bilateral controller. A packet reflector with wireless internet connection is used to introduce serious time-varying communication delay of teleoperators. Average amount of time-delay was about 190(msec) for round trip, and varying between 175(msec) and 275(msec). Moreover some data packet was lost during the communication due to UDP data communication. Even under the serious time-varying delay and packet loss communication condition, the proposed approach can achieve stable teleoperation in free motion and hard contact as well.

복강경 수술 로봇의 힘 반향을 위한 임피던스 모델 기반의 양방향 제어 (Impedance Model based Bilateral Control for Force reflection of a Laparoscopic Surgery Robot)

  • 윤성민;김원재;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제20권8호
    • /
    • pp.801-806
    • /
    • 2014
  • LAS (Laparoscopy Assisted Surgery) has been substituted alternatively for traditional open surgery. However, when using a commercialized robot assisted laparoscopic such as Da Vinci, surgeons have encountered some problems due to having to depend only on information by visual feedback. To solve this problem, a haptic function is required. In order to realize the haptic teleoperation system, a force feedback and bilateral control system are needed. Previous research showed that the perturbation value estimated by a SPO (Sliding Perturbation Observer) followed a reaction force that loaded on the surgical robot instrument. Thus, in this paper, the force feedback problem of surgical robots is solved through the reaction force estimation method. This paper then introduces the possibility of the haptic function realization of a laparoscopic surgery robot using a bilateral control system. For bilateral control, the master uses an impedance control and the slave uses a SMC (Sliding Mode Control). The experiment results show that a torque and force sensorless teleoperation system can be implemented using a bilateral control structure.

A New Robust Controller Design Architecture of Teleoperation to Overcome the Compensation Problem

  • Park, Kyong-Ho;Chung, Wan-Kyun;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.609-615
    • /
    • 2003
  • There were many papers on the bilateral teleoperation system. But a few papers dealt with the controller design method in the presence of uncertainties, disturbances and measurement noises. In this paper, we propose a robust controller design framework in teleoperation, which can overcome the compensation problem that will be defined. To prove the effectiveness of the method of proposed design, comparative simulation with the existing four channel design method was performed

  • PDF

A Bilateral Teleoperation Control Scheme for 2-DOF Manipulators with High Reduction Ratio Joints

  • Ahn, Sung-Ho;Yoon, Ji-Sup;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.519-519
    • /
    • 2000
  • Since the dynamics of the slave manipulator with high reduction ratio joints is likely to be much slower than that of the master manipulator, the control input the slave manipulator is so frequently saturated. This paper proposes a bilateral teleoperation control scheme for 2-DOF manipulators with high reduction ratio joints, which can effectively compensate the control input saturation. In the proposed scheme, the controllers of the slave manipulator are designed with an anti-windup feature and forces caused by the saturation are reflected to the operator holding the operating handle of the master manipulator. When the control input of the slave manipulator is saturated, the master manipulator moves slowly file to tile reflected forces. In this way, the position tracking performance of the slave manipulator with high reduction ratio joints can be enhanced regardless of saturation. The proposed scheme is shown to give excellent position tracking performance through a series of experiments.

  • PDF

Identification of Feasible Scaled Teleoperation Region Based on Scaling Factors and Sampling Rates

  • Hwang, Dal-Yeon;Blake Hannaford;Park, Hyoukryeol
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.1-9
    • /
    • 2001
  • The recent spread of scaled telemanipulation into microsurgery and the nano-world increasingly requires the identification of the possible operation region as a main system specification. A teleoperation system is a complex cascaded system since the human operator, master, slave, and communication are involved bilaterally. Hence, a small time delay inside a master and slave system can be critical to the overall system stability even without communication time delay. In this paper we derive an upper bound of the scaling product of position and force by using Llewellyns unconditional stability. This bound can be used for checking the validity of the designed bilateral controller. Time delay from the sample and hold of computer control and its effects on stability of scaled teleoperation are modeled and simulated based on the transfer function of the teleoperation system. The feasible operation region in terms of position and force scaling decreases sharply as the sampling rate decreases and time delays inside the master and slave increase.

  • PDF

햅틱 제어 기술 동향 (A Survey of Haptic Control Technology)

  • 류제하;김재하;서창훈;임요안;김종필
    • 대한기계학회논문집A
    • /
    • 제33권4호
    • /
    • pp.283-295
    • /
    • 2009
  • Haptics technology allows one to interact with virtual environments, augmented environments, and real environments providing tactual sensory information. Science and technology of haptics can in general be classified into three groups: machine haptics, computer haptics, and human haptics. This paper surveys the state-of-the-art of haptic control technology for virtual environments and teleoperation (real environments) and then proposes possible future research directions in the following areas: haptic stability control, bilateral teleoperation control, and stability enhancement control.

웨이브 변수의 가변 특성 임피던스를 이용한 시간지연을 갖는 양 방향 원격조작시스템의 안정화 제어 방법 (A Stabilizing Control technique for Bilateral Teleoperation System with Time delay using Adjustable Characteristic Impedance of wave Variable)

  • 김형욱;김종복;서일홍;이병주
    • 제어로봇시스템학회논문지
    • /
    • 제9권8호
    • /
    • pp.600-609
    • /
    • 2003
  • A hybrid stabilization approach involving both Passivity Observer/passivity Controller and wave variables is addressed to stabilize the teleoperation system with time delay. To guarantee the stability of master or slave side, Passivity Observer and Passivity Controller are applied. But Passivity Observer and Passivity Controller technique cannot deal with communication delay and even small communication delay cause the system to be unstable. To cope with this problem, wave variables are additionally employed to have robustness to arbitrary delays. To show the validity of our proposed approach, several computer simulation results are illustrated.

ARMA기반의 데이터 예측기법 및 원격조작시스템에서의 응용 (ARMA-based data prediction method and its application to teleoperation systems)

  • 김헌희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.56-61
    • /
    • 2017
  • 본 논문은 시간지연이 있는 데이터의 예측기법과 햅틱기반의 원격조작시스템에서의 응용방법을 다룬다. 일반적으로 네트워크 환경은 데이터 전송에 따른 시간지연이 필수적으로 동반되며, 햅틱기반의 원격조작시스템이 이러한 네트워크 환경에 구현되는 경우 시간지연으로 인해 전체 시스템의 성능저하를 피할 수 없다. 이러한 상황을 고려하여, 본 논문은 ARMA모델을 기반으로 모델파라미터의 학습방법과 실시간 예측을 위한 재귀적 알고리즘을 제안한다. 제안된 방법은 가상공간에 놓인 물체에 대하여 양방향 햅틱 상호작용의 상황에서 5ms의 샘플링 주기로 획득한 햅틱데이터에 적용되며, 그 결과로서 100ms 이후의 값을 예측함에 있어 위치수준 오차 1mm이내의 예측성능을 보였다.

강인적응 알고리즘을 통한 Haptic Interlace의 임피던스 제어 (A Robust Adaptive Impedance Control Algorithm for Haptic Interfaces)

  • 박헌;이상철;이수성;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.393-400
    • /
    • 2002
  • Teleoperation enables an operator to manipulate remote objects. One of the main goals in teleoperation researches is to provide the operator with the fueling of the telepresence, being present at the remote site. For these purposes, a master robot must be designed as a bilateral control system that can transmit position/force information to a slave robot and feedback the interaction force. A newly proposed impedance algorithm is applied for the control of a haptic interface that was developed as a master robot. With the movements of the haptic interface for position/force commands, impedance parameters are always varying. When the impedance parameters between an operator and the haptic interface and the dynamic model are known precisely, many model based control theories and methods can be used to control the device accurately. However, due to the parameters'variations and the uncertainty of the dynamic model, it is difficult to control haptic interfaces precisely. This paper presents a robust adaptive impedance control algorithm for haptic interfaces.

모델링 불확실성이 존재하는 원격조작기에서 강인 안정을 보장하는 양방향 제어기 설계 (Design of the robust bilateral controller for teleoperators with modeling uncertainties)

  • 이형기;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.976-979
    • /
    • 1996
  • Teleoperation is the extension of a person's sensing and manipulation capability to a remote location. Teleoperators generally can be modeled as linear transfer function indecently including modeling uncertainty. Modeling uncertainties can make the system unstable and its performance poor. Thus I'm studying about a design framework for a bilateral controller of teleoperator systems with modeling uncertainties. In this paper, a method based on the H$_{\infty}$-optimal control and .mu.-synthesis frameworks are introduced to design a controller for the teleoperator that achieves stability and performance in the presence of the modeling uncertainties..ties.inties.

  • PDF