• Title/Summary/Keyword: Bike frame

Search Result 16, Processing Time 0.017 seconds

Development Process of Monocoque Frame for Hybrid Bicycle using Bolt Fastening (볼트체결을 이용한 하이브리드 자전거 모노코크 프레임 개발 프로세스)

  • Lee, In-Chul;Jang, Dong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.93-100
    • /
    • 2013
  • This paper presents the development process for a bicycle monocoque frame using bolt fastening. Traditionally, bicycle frames have been constructed with metal tubes joined at their ends by welding. These frames have been brazed or soldered onto metal lugs, forming the frame. Because stress loads become greatest at the joint of the bicycle tube frame, joint construction strongly influences frame design and construction. To avoid the inherent problems of material discontinuity at frame joints, numerous designers have attempted to reduce or eliminate the number of joints in tube frames. Nevertheless, the manufacture of high quality, reliable, one-piece and jointless frames has proven difficult and expensive. In this study, a new monocoque frame adapted to a hybrid bike is proposed. The advantage of the monocoque frame, is theat is has a rechargeable battery system that is built into the frame; as a result, the emotional quality for the customer is improved. In order to estimate the design compatibility compared with that of tube frames, structural analysis is performed using finite element method. A prototype based on a modified design has also been made and stability testing has been carried out.

Evaluation of Fatigue Endurance for an MTB Frame (산악용 자전거 프레임의 피로 내구성 평가)

  • Kim, Taek Young;Lee, Man Suk;Lim, Woong;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.1-5
    • /
    • 2013
  • In order to evaluate fatigue endurance for an MTB(mountain bike) frame, FEM(finite element method) analysis was performed. For evaluating the fatigue endurance of the MTB frame, the S-N data for Al-6061 fillet weldment were compared with the stress analysis results through FEM analysis of the frame. Three loading condition, pedalling, horizontal and vertical loading conditions were considered for fatigue endurance evaluation. Horizontal loading(+1200 N) condition was found to be the most severe to the frame. The maximum von Mises stress of the frame under horizontal loading(+1200 N) condition was determined 294 MPa through FEM analysis of the frame. Conclusively, on the basis of fatigue strength of 200 MPa at the number of cycles of 50,000, the MTB frame has an improper safety factor of approximately 0.25, suggesting that this frame needs reinforcement.

A Convergence Study through Durability Analysis due to the Configuration of Automotive Frame Butted (자전거 프레임 버티드 형상에 따른 내구성 해석을 통한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.271-276
    • /
    • 2018
  • When the driver riding in a bicycle goes on board, the load of driver is shown differently according to the position loaded on the frame of bicycle. The load is applied most at the joint of bike frame and the load at the mid-part of frame is applied least than the other parts. So, the weight of frame is decreased as the part not applied with a lot of load is manufactured into the thin thickness. As the part applied with high load is manufactured into the thick thickness, it can be endured through this load. The configurations of general frame, double butted and triple butted were modelled by using CATIA program. The durabilities of each model due to the load of passenger were investigated by carrying the structural and fatigue analyses. As this study result investigated with the analysis program of ANSYS, the deformation of general frame happened most and that of triple butted became least. These simulation analysis data are intended to be used to design the actual bicycle frame in the most efficient way at design and manufacture.

Technical Note : Development of Electric Riding Machine for Cycle Fitting (단신 : 사이클 피팅을 위한 전동 승차 조절기 개발)

  • Bae, Jae-Hyuk;Choi, Jin-Seung;Kang, Dong-Won;Seo, Jeong-Woo;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.373-378
    • /
    • 2012
  • The purpose of this study was to develop an electric riding machine for cycle fitting to control riding posture easily, to measure frame size quantitatively, and to overcome disadvantages of the traditional systems. The electric riding machine consisted of actuator, load controller, and display & control unit. The actuator unit by BLDC(BrushLess Direct Current) motor drives the saddle height up and down, the crank forward and backward, the handlebar up and down, and the handlebar forward and backward. The load controller unit controls loads by Eddy current controller with electromagnet and aluminum circular plate. The display & control unit consisted of frame size controller and display panel which shows top tube length(485~663mm), head tube length(85~243mm), seat tube length(481~671mm), and seat tube angle($62.7{\sim}76.4^{\circ}$). The range of frame size control for developed electric riding machine did not have difference compared to traditional commercial systems, but quantitative and precise control with 0.1 mm length and $0.1^{\circ}$ angle was possible through digital measurement. Unlike traditional commercial systems, frame size control was possible during riding through motor driven method, thus fitting duration decreased. It is necessary for further improvement to have feedback from users. It is believed that developed electric riding machine can help to develop domestic fitting system.

A Study on the Fuzzy control of Optimum Design System for Bicycle Frame (자전거 프레임의 최적설계시스템의 퍼지제어에 관한 연구)

  • Kim, Sung-Dae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.49-56
    • /
    • 2011
  • Leisure bicycles are fabricated in a variety of ways these days. Although, the bicycles are designed and manufactured in a variety of ways by numerous companies, customer has a difficulty in gaining information of bicycle which suits them. Accordingly most of buyers purchase bicycle considering body size. Employing the method is one of the ways to decide bike size on the ground of standard body measurement. However, the method above to purchase bicycle is not appropriate for customer considering his/her body. The research mainly aims to design bicycle which allows buyer to adjust optimal design system by himself/herself considering his/her body size. In addition, a device employing fuzzy controller implemented bicycle run test. Using on the result, the research explored an optimal bicycle system which makes a decision whether a bicycle fits body of customer.

The Study of Three-wheel with Active Tilt Control(ATC) Systems in Design - Concentrated on Three Wheel Motor Bike (틸팅시스템을 적용한 삼륜차량 디자인 연구 - 삼륜 스쿠터를 중심으로 -)

  • 곽용민;안철홍
    • Archives of design research
    • /
    • v.16 no.1
    • /
    • pp.15-24
    • /
    • 2003
  • In the latest date, vehicles are offered to the drivers, not only the skill for shifting but the pleasure for driving vehicles that are existing today can be a social problem because the amount of vehicles that are increasing give difficulty for the traffic facilities and parking expansion. these day 80% of four wheeled vehicle carriers single or double person the reducing car scale is an important thing about the financial good use resources of energy and the storage of environment. A solution for these problem is a new general idea vehicle development for one or two person to ride. For the sake of these reasons, first, the information is collected and analyzed about existing foreign countries production. Car external design is intended by mathematical modeling, simulation and model testing about frame system of new concept specially we would like to show three wheeled vehicle that has active tilt control(ATC) system. This car tilts actively by the center rotation wheel and frame when the vehicle turns.

  • PDF