• Title/Summary/Keyword: Big6 Model

Search Result 314, Processing Time 0.026 seconds

The Study for Estimating Traffic Volumes on Urban Roads Using Spatial Statistic and Navigation Data (공간통계기법과 내비게이션 자료를 활용한 도시부 도로 교통량 추정연구)

  • HONG, Dahee;KIM, Jinho;JANG, Doogik;LEE, Taewoo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.3
    • /
    • pp.220-233
    • /
    • 2017
  • Traffic volumes are fundamental data widely used in various traffic analysis, such as origin-and-destination establishment, total traveled kilometer distance calculation, congestion evaluation, and so on. The low number of links collecting the traffic-volume data in a large urban highway network has weakened the quality of the analyses in practice. This study proposes a method to estimate the traffic volume data on a highway link where no collection device is available by introducing a spatial statistic technique with (1) the traffic-volume data from TOPIS, and National Transport Information Center in the Ministry of Land, Infrastructure, and (2) the navigation data from private navigation. Two different component models were prepared for the interrupted and the uninterrupted flows respectively, due to their different traffic-flow characteristics: the piecewise constant function and the regression kriging. The comparison of the traffic volumes estimated by the proposed method against the ones counted in the field showed that the level of error includes 6.26% in MAPE and 5,410 in RMSE, and thus the prediction error is 20.3% in MAPE.

Seismic Fragility of Bridge Considering Foundation and Soil Structure Interaction (교량기초 종류 및 지반-구조물 상호작용을 고려한 지진취약도 분석)

  • Kim, Sun-Jae;An, Hyo-Joon;Song, Ki-il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.129-137
    • /
    • 2020
  • In performing the structural analysis, the foundation is considered to be a fixed end as a plastic hinge model. In this study, the displacements of the foundation, pier, and shoe were compared when the foundation modeled as a fixed end, a shallow foundation constructed on bedrock of 2m depth, and a pile foundation constructed in the 10m to 20m depth of bedrock. The shear force was also compared, and the probability of damage was calculated and compared for the critical condition. When calculated as a fixed end, the displacement of the foundation converged to 0mm, but the shallow foundation built on the bedrock with a depth of 2m caused relatively displacement, and the pile foundation constructed to contact the bedrock with a depth of 18m caused a larger displacement. In addition, it was analyzed that the displacement of the foundation, which is the lower structure, affects the displacement of the super structure, but the difference in shear force applied to the foundation was insignificant in the three cases. There was no difference between the shallow foundation and the pile foundation in the influence on the displacement of the top of the pier, but there was a big difference from the analysis assuming as a fixed end.

Semantic Segmentation of the Submerged Marine Debris in Undersea Images Using HRNet Model (HRNet 기반 해양침적쓰레기 수중영상의 의미론적 분할)

  • Kim, Daesun;Kim, Jinsoo;Jang, Seonwoong;Bak, Suho;Gong, Shinwoo;Kwak, Jiwoo;Bae, Jaegu
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1329-1341
    • /
    • 2022
  • Destroying the marine environment and marine ecosystem and causing marine accidents, marine debris is generated every year, and among them, submerged marine debris is difficult to identify and collect because it is on the seabed. Therefore, deep-learning-based semantic segmentation was experimented on waste fish nets and waste ropes using underwater images to identify efficient collection and distribution. For segmentation, a high-resolution network (HRNet), a state-of-the-art deep learning technique, was used, and the performance of each optimizer was compared. In the segmentation result fish net, F1 score=(86.46%, 86.20%, 85.29%), IoU=(76.15%, 75.74%, 74.36%), For the rope F1 score=(80.49%, 80.48%, 77.86%), IoU=(67.35%, 67.33%, 63.75%) in the order of adaptive moment estimation (Adam), Momentum, and stochastic gradient descent (SGD). Adam's results were the highest in both fish net and rope. Through the research results, the evaluation of segmentation performance for each optimizer and the possibility of segmentation of marine debris in the latest deep learning technique were confirmed. Accordingly, it is judged that by applying the latest deep learning technique to the identification of submerged marine debris through underwater images, it will be helpful in estimating the distribution of marine sedimentation debris through more accurate and efficient identification than identification through the naked eye.

Analysis of extreme cases of climate change impact on watershed hydrology and flow duration in Geum river basin using SWAT and STARDEX (SWAT과 STARDEX를 이용한 극한 기후변화 사상에 따른 금강유역의 수문 및 유황분석)

  • Kim, Yong Won;Lee, Ji Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.905-916
    • /
    • 2018
  • The purpose of this study is to evaluate the climate change impact on watershed hydrology and flow duration in Geum River basin ($9,645.5km^2$) especially by extreme scenarios. The rainfall related extreme index, STARDEX (STAtistical and Regional dynamical Downscaling of EXtremes) was adopted to select the future extreme scenario from the 10 GCMs with RCP 8.5 scenarios by four projection periods (Historical: 1975~2005, 2020s: 2011~2040, 2050s: 2041~2070, 2080s: 2071~2100). As a result, the 5 scenarios of wet (CESM1-BGC and HadGEM2-ES), normal (MPI-ESM-MR), and dry (INM-CM4 and FGOALS-s2) were selected and applied to SWAT (Soil and Water Assessment Tool) hydrological model. The wet scenarios showed big differences comparing with the normal scenario in 2080s period. The 2080s evapotranspiration (ET) of wet scenarios varied from -3.2 to +3.1 mm, the 2080s total runoff (TR) varied from +5.5 to +128.4 mm. The dry scenarios showed big differences comparing with the normal scenario in 2020s period. The 2020s ET for dry scenarios varied from -16.8 to -13.3 mm and the TR varied from -264.0 to -132.3 mm respectively. For the flow duration change, the CFR (coefficient of flow regime, Q10/Q355) was altered from +4.2 to +10.5 for 2080s wet scenarios and from +1.7 to +2.6 for 2020s dry scenarios. As a result of the flow duration analysis according to the change of the hydrological factors of the Geum River basin applying the extreme climate change scenario, INM-CM4 showed suitable scenario to show extreme dry condition and FGOALS-s2 showed suitable scenario for the analysis of the drought condition with large flow duration variability. HadGEM2-ES was evaluated as a scenario that can be used for maximum flow analysis because the flow duration variability was small and CESM1-BGC was evaluated as a scenario that can be applied to the case of extreme flood analysis with large flow duration variability.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

The effect of climate change on hydroelectric power generation of multipurpose dams according to SSP scenarios (SSP 시나리오에 따른 기후변화가 다목적댐 수력발전량에 미치는 영향 분석)

  • Wang, Sizhe;Kim, Jiyoung;Kim, Yongchan;Kim, Dongkyun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.7
    • /
    • pp.481-491
    • /
    • 2024
  • Recent droughts make hydroelectric power generation (HPG) decreasing. Due to climate change in the future, the frequency and intensity of drought are expected to increase, which will increase uncertainty of HPG in multi-purpose dams. Therefore, it is necessary to estimate the amount of HPG according to climate change scenarios and analyze the effect of drought on the amount of HPG. This study analyzed the future HPG of the Soyanggang Dam and Chungju Dam according to the SSP2-4.5 and SSP5-8.5 scenarios. Regression equations for HPG were developed based on the observed data of power generation discharge and HPG in the past provided by My Water, and future HPGs were estimated according to the SSP scenarios. The effect of drought on the amount of HPG was investigated based on the drought severity calculated using the standardized precipitation index (SPI). In this study, the future SPIs were calculated using precipitation data based on four GCM models (CanESM5, ACCESS-ESM1-5, INM-CM4-8, IPSL-CM6A) provided through the environmental big data platform. Overall results show that climate change had significant effects on the amount of HPG. In the case of Soyanggang Dam, the amount of HPG decreased in the SSP2-4.5 and SSP5-8.5 scenarios. Under the SSP2-4.5 scenario the CanESM model showed a 65% reduction in 2031, and under the SSP5-8.5 scenario the ACCESS-ESM1-5 model showed a 54% reduction in 2029. In the case of Chungju Dam, under the SSP2-4.5 and SSP5-8.5 scenarios the average monthly HPG compared to the reference period showed a decreasing trend except for INM-CM4 model.

Assessment of the Contribution of Weather, Vegetation and Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (II) - Calibration, Validation and Application of the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지 유역과 하천유역에 미치는 기여도 평가(II) - 모형의 검·보정 및 적용 -)

  • Park, Geun-Ae;Ahn, So-Ra;Park, Min-Ji;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.121-135
    • /
    • 2010
  • This study is to assess the effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water supply using the SLURP. Before the future analysis, the SLURP model was calibrated using the 6 years daily streamflow records (1998-200398 and validated using 3 years streamflow data (2004-200698 for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang8 and Gosam98located in Anseongcheon watershed. The calibration and validation results showed that the model was able to simulate the daily streamflow well considering the reservoir operation for paddy irrigation and flood discharge, with a coefficient of determination and Nash-Sutcliffe efficiency ranging from s 7 to s 9 and 0.5 to s 8 respectively. Then, the future potential climate change impact was assessed using the future wthe fu data was downscaled by nge impFactor method throuih bias-correction, the future land uses wtre predicted by modified CA-Markov technique, and the future ve potentiacovfu information was predicted and considered by the linear regression bpowten mecthly NDVI from NOAA AVHRR ima ps and mecthly mean temperature. The future (2020s, 2050s and 2e 0s) reservoir inflow, the temporal changes of reservoir storaimpand its impact to downstream streamflow watershed wtre analyzed for the A2 and B2 climate change scenarios based on a base year (2005). At an annual temporal scale, the reservoir inflow and storaimpchange oue, anagricultural reservoir wtre projected to big decrease innautumnnunder all possiblmpcombinations of conditions. The future streamflow, soossmoosture and grounwater recharge decreased slightly, whtre as the evapotransporation was projected to increase largely for all possiblmpcombinations of the conditions. At last, this study was analysed contribution of weather, vegetation and land use change to assess which factor biggest impact on agricultural reservoir and stream watershed. As a result, weather change biggest impact on agricultural reservoir inflow, storage, streamflow, evapotranspiration, soil moisture and groundwater recharge.

Generation of Food Waste from Different Sources and Its Composting Measures at the Apartment Complex (배출원별 음식물 쓰레기 발생 특성 및 아파트 단지에서의 퇴비화 방안 (대전 및 충청남도 지역을 중심으로))

  • Kang, H.;Lee, O.L.;Kim, J.W.;Hur, H.W.;Han, S.H.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.1
    • /
    • pp.53-66
    • /
    • 1998
  • This study was carried out to investigate the typical composition of food waste from municipal solid wastes (MSW) and unit food waste generation rates from different sources in the model cities and to study the food waste management system from unit household to composting facilities. The annual average food waste composition of MSW was determined as 49% in Taejon and 52% in Chungnam Province, respectively. No big difference in food waste composition was found among the different sources. Since the paper waste generally occupied the half of food waste, over 75% of MSW was found to be compostable or biodegradable. Per capita food waste generation rate, 200~250g/capita day was determined by the direct measurement from 32 households, while 380g/capita day for Chungnam Province and 400 g/capita day for Taejon were estimated by the load count analysis In the sanitary landfills. This difference means people contribute generating food waste at outside house approximately twice as much as that at inside house. Per capita food waste generation rates from several sources were determined as follows; 166~215g/capita day at municipalities, 400g/visitor day at a first class hotel, 170g/student day at a university restaurant. Food waste generation from restaurant was strongly dependant upon it's level or quality; 670g/capita day at the high level restaurant, 190g/capita day at the middle class and 60 g/capita day at the lower class restaurant. The food waste reduction rate in a In situ fermentor showed 30~40g/kg day.

  • PDF

Two and Three Dimensional Analysis about the Reflection Coefficient by the Slit Caisson and Resulting Wave Pressure Acting on the Structure (슬리트케이슨제에 의한 반사율과 구조물에 작용하는 파압에 관한 2차원 및 3차원해석)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Baek, Dong-Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.374-386
    • /
    • 2010
  • Recently, the theoretical and experimental research is being made actively in control character of waves of perforated-wall caisson breakwater like the slit caisson. This study showed that the character of reflection coefficient and the wave pressure acting on the front and inner of slit caisson were estimated in two and three dimensional numerical wave flume and compared each other. The numerical experiment was set and conducted by various cases as to a variety of wave steepness under 7 sec, 9 sec, 11sec and 13 sec period condition. In this study using a 2 and 3 dimensional numerical wave flume, it applied the Model for the immiscible two-phase flow based on the Naveir-Stokes Equations. This technique can easily reproduce a complicated physical phenomenon more than others and organize the program simply. According to the results of the experiment, the reflection coefficient was estimated high in short-period waves. However, 2-dimensional numerical experiment and 3-dimensional numerical experiment were the same in case of the long-period waves and high wave steepness. And to conclude in case of short-period waves the pressures were a relatively small difference between the two, but there was a big gap in longperiod waves and high wave steepness.