• Title/Summary/Keyword: Big medical center

Search Result 154, Processing Time 0.024 seconds

Healthcare service analysis using big data

  • Park, Arum;Song, Jaemin;Lee, Sae Bom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.149-156
    • /
    • 2020
  • In the Fourth Industrial Revolution, successful cases using big data in various industries are reported. This paper examines cases that successfully use big data in the medical industry to develop the service and draws implications in value that big data create. The related work introduces big data technology in the medical field and cases of eight innovative service in the big data service are explained. In the introduction, the overall structure of the study is mentioned by describing the background and direction of this study. In the literature study, we explain the definition and concept of big data, and the use of big data in the medical industry. Next, this study describes the several cases, such as technologies using national health information and personal genetic information for the study of diseases, personal health services using personal biometric information, use of medical data for efficiency of business processes, and medical big data for the development of new medicines. In the conclusion, we intend to provide direction for the academic and business implications of this study, as well as how the results of the study can help the domestic medical industry.

Analysis of the Status of Artificial Medical Intelligence Technology Based on Big Data

  • KIM, Kyung-A;CHUNG, Myung-Ae
    • Korean Journal of Artificial Intelligence
    • /
    • v.10 no.2
    • /
    • pp.13-18
    • /
    • 2022
  • The role of artificial medical intelligence through medical big data has been focused on data-based medical device business and medical service technology development in the field of diagnostic examination of the patient's current condition, clinical decision support, and patient monitoring and management. Recently, with the 4th Industrial Revolution, the medical field changed the medical treatment paradigm from the method of treatment based on the knowledge and experience of doctors in the past to the form of receiving the help of high-precision medical intelligence based on medical data. In addition, due to the spread of non-face-to-face treatment due to the COVID-19 pandemic, it is expected that the era of telemedicine, in which patients will be treated by doctors at home rather than hospitals, will soon come. It can be said that artificial medical intelligence plays a big role at the center of this paradigm shift in prevention-centered treatment rather than treatment. Based on big data, this paper analyzes the current status of artificial intelligence technology for chronic disease patients, market trends, and domestic and foreign company trends to predict the expected effect and future development direction of artificial intelligence technology for chronic disease patients. In addition, it is intended to present the necessity of developing digital therapeutics that can provide various medical services to chronically ill patients and serve as medical support to clinicians.

Research on the development of demand for medical and bio technology using big data (빅데이터 활용 의학·바이오 부문 사업화 가능 기술 연구)

  • Lee, Bongmun.;Nam, Gayoung;Kang, Byeong Chul;Kim, CheeYong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.345-352
    • /
    • 2022
  • Conducting AI-based fusion business due to the increment of ICT fusion medical device has been expanded. In addition, AI-based medical devices help change existing medical system on treatment into the paradigm of customized treatment such as preliminary diagnosis and prevention. It will be generally promoted to the change of medical device industry. Although the current demand forecasting of medical biotechnology commercialization is based on the method of Delphi and AHP, there is a problem that it is difficult to have a generalization due to fluctuation results according to a pool of participants. Therefore, the purpose of the paper is to predict demand forecasting for identifying promising technology based on building up big data in medical biotechnology. The development method is to employ candidate technologies of keywords extracted from SCOPUS and to use word2vec for drawing analysis indicator, technological distance similarity, and recommended technological similarity of top-level items in order to achieve a reasonable result. In addition, the method builds up academic big data for 5 years (2016-2020) in order to commercialize technology excavation on demand perspective. Lastly, the paper employs global data studies in order to develop domestic and international demand for technology excavation in the medical biotechnology field.

Medical image control process improvement based on Cardiac PACS (Cardiac PACS 구축에 따른 의료영상 관리 프로세스 개선)

  • Jung, Young-Tae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.16 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • Heart related special images are classified as Cardiac US, XA, CT, MRI. Several Problem is caused by image compression, control and medical support point, so most big hospitals have created a Cadiac PACS differentially in past years. For this reason, create a conflict in inner colleague and patient, protector that result from 2 data processing server operating independently in 1 medical center area. For this reason, we sugges an alternative model of best medical control process together with understand the current situation on medical facility.

  • PDF

Standardization and Validation of Big Five Inventory-Korean Version(BFI-K) in Elders (노인에서 한국판 성격 5요인 척도의 표준화 및 타당도)

  • Kim, Seon-Young;Kim, Jae-Min;Yoo, Joon-An;Bae, Kyung-Yeol;Kim, Sung-Wan;Yang, Su-Jin;Shin, Il-Seon;Yoon, Jin-Sang
    • Korean Journal of Biological Psychiatry
    • /
    • v.17 no.1
    • /
    • pp.15-25
    • /
    • 2010
  • Objectives : The Big Five Inventory(BFI) and the Big Five Inventory-10(BFI-10) are widely used instruments for the evaluation of personality in various cultures, while they have not been formally validated in Korea. This study aimed to develop the Korean versions of BFI(BFI-K) and BFI 10(BFI-K-10) with a Korean elderly population. Methods : The study sample consisted of 1,038 community dwelling elders. BFI-K and BFI-K-10 were administered. For the reliability analyses, scores on Guttmans' split half and Cronbach's ${\alpha}$ were estimated. For the validity analyses, the Korean version of Geriatric Depression Scale(KGDS) and the State-Trait Anxiety Inventory(STAI) were investigated. Results : The reliability of the BFI-K was good(Guttmans' split half=0.59-0.78, Cronbach's ${\alpha}$=0.52-0.75). Scores on the BFI-K-10 were significantly correlated with the scores on BFI-K. Scores on the BFI-K and the BFI-K-10 were significantly correlated with the scores on KGDS and STAI. Conclusion : Both BFI-K and BFI-K-10 might be reliable and valid instruments to evaluate the personality in Korean community elders. BFI-K-10 is short and easy to be administered, and therefore it would be very convenient to use.

IoT-Based Health Big-Data Process Technologies: A Survey

  • Yoo, Hyun;Park, Roy C.;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.974-992
    • /
    • 2021
  • Recently, the healthcare field has undergone rapid changes owing to the accumulation of health big data and the development of machine learning. Data mining research in the field of healthcare has different characteristics from those of other data analyses, such as the structural complexity of the medical data, requirement for medical expertise, and security of personal medical information. Various methods have been implemented to address these issues, including the machine learning model and cloud platform. However, the machine learning model presents the problem of opaque result interpretation, and the cloud platform requires more in-depth research on security and efficiency. To address these issues, this paper presents a recent technology for Internet-of-Things-based (IoT-based) health big data processing. We present a cloud-based IoT health platform and health big data processing technology that reduces the medical data management costs and enhances safety. We also present a data mining technology for health-risk prediction, which is the core of healthcare. Finally, we propose a study using explainable artificial intelligence that enhances the reliability and transparency of the decision-making system, which is called the black box model owing to its lack of transparency.

Building Linked Big Data for Stroke in Korea: Linkage of Stroke Registry and National Health Insurance Claims Data

  • Kim, Tae Jung;Lee, Ji Sung;Kim, Ji-Woo;Oh, Mi Sun;Mo, Heejung;Lee, Chan-Hyuk;Jeong, Han-Young;Jung, Keun-Hwa;Lim, Jae-Sung;Ko, Sang-Bae;Yu, Kyung-Ho;Lee, Byung-Chul;Yoon, Byung-Woo
    • Journal of Korean Medical Science
    • /
    • v.33 no.53
    • /
    • pp.343.1-343.8
    • /
    • 2018
  • Background: Linkage of public healthcare data is useful in stroke research because patients may visit different sectors of the health system before, during, and after stroke. Therefore, we aimed to establish high-quality big data on stroke in Korea by linking acute stroke registry and national health claim databases. Methods: Acute stroke patients (n = 65,311) with claim data suitable for linkage were included in the Clinical Research Center for Stroke (CRCS) registry during 2006-2014. We linked the CRCS registry with national health claim databases in the Health Insurance Review and Assessment Service (HIRA). Linkage was performed using 6 common variables: birth date, gender, provider identification, receiving year and number, and statement serial number in the benefit claim statement. For matched records, linkage accuracy was evaluated using differences between hospital visiting date in the CRCS registry and the commencement date for health insurance care in HIRA. Results: Of 65,311 CRCS cases, 64,634 were matched to HIRA cases (match rate, 99.0%). The proportion of true matches was 94.4% (n = 61,017) in the matched data. Among true matches (mean age 66.4 years; men 58.4%), the median National Institutes of Health Stroke Scale score was 3 (interquartile range 1-7). When comparing baseline characteristics between true matches and false matches, no substantial difference was observed for any variable. Conclusion: We could establish big data on stroke by linking CRCS registry and HIRA records, using claims data without personal identifiers. We plan to conduct national stroke research and improve stroke care using the linked big database.

The Overview of the Public Opinion Survey and Emerging Ethical Challenges in the Healthcare Big Data Research (보건의료빅데이터 연구에 대한 대중의 인식도 조사 및 윤리적 고찰)

  • Cho, Su Jin;Choe, Byung In
    • The Journal of KAIRB
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2022
  • Purpose: The traditional ethical study only suggests a blurred insight on the research using medical big data, especially in this rapid-changing and demanding environment which is called "4th Industry Revolution." Current institutional/ethical issues in big data research need to approach with the thoughtful insight of past ethical study reflecting the understanding of present conditions of this study. This study aims to examine the ethical issues that are emerging in recent health care big data research. So, this study aims to survey the public perceptions on of health care big data as part of the process of public discourse and the acceptance of the utility and provision of big data research as a subject of health care information. In addition, the emerging ethical challenges and how to comply with ethical principles in accordance with principles of the Belmont report will be discussed. Methods: Survey was conducted from June 3th August to 6th September 2020. The online survey was conducted through voluntary participation through Internet users. A total of 319 people who completed the survey (±5.49%P [95% confidence level] were analyzed. Results: In the area of the public's perspective, the survey showed that the medical information is useful for new medical development, but it is also necessary to obtain consents from subjects in order to use that medical information for various research purposes. In addition, many people were more concerned about the possibility of re-identifying personal information in medical big data. Therefore, they mentioned the necessity of transparency and privacy protection in the use of medical information. Conclusion: Big data on medical care is a core resource for the development of medicine directly related to human life, and it is necessary to open up medical data in order to realize the public good. But the ethical principles should not be overlooked. The right to self-determination must be guaranteed by means of clear, diverse consent or withdrawal of subjects, and processed in a lawful, fair and transparent manner in the processing of personal information. In addition, scientific and ethical validity of medical big data research is indispensable. Such ethical healthcare data is the only key that will lead to innovation in the future.

  • PDF

Medical Image Analysis Using Artificial Intelligence

  • Yoon, Hyun Jin;Jeong, Young Jin;Kang, Hyun;Jeong, Ji Eun;Kang, Do-Young
    • Progress in Medical Physics
    • /
    • v.30 no.2
    • /
    • pp.49-58
    • /
    • 2019
  • Purpose: Automated analytical systems have begun to emerge as a database system that enables the scanning of medical images to be performed on computers and the construction of big data. Deep-learning artificial intelligence (AI) architectures have been developed and applied to medical images, making high-precision diagnosis possible. Materials and Methods: For diagnosis, the medical images need to be labeled and standardized. After pre-processing the data and entering them into the deep-learning architecture, the final diagnosis results can be obtained quickly and accurately. To solve the problem of overfitting because of an insufficient amount of labeled data, data augmentation is performed through rotation, using left and right flips to artificially increase the amount of data. Because various deep-learning architectures have been developed and publicized over the past few years, the results of the diagnosis can be obtained by entering a medical image. Results: Classification and regression are performed by a supervised machine-learning method and clustering and generation are performed by an unsupervised machine-learning method. When the convolutional neural network (CNN) method is applied to the deep-learning layer, feature extraction can be used to classify diseases very efficiently and thus to diagnose various diseases. Conclusions: AI, using a deep-learning architecture, has expertise in medical image analysis of the nerves, retina, lungs, digital pathology, breast, heart, abdomen, and musculo-skeletal system.

Construction and Performance Evaluation of Standard System for Medical Big Data (의료 빅데이터를 위한 표준화 시스템 구축 및 성능평가)

  • Kim, Seung-Jin;Jeong, Chang-Won;No, Si-Hyeong;Kim, Ji-Eon;Kim, Tae-Hoon;Jun, Hong Yong;Lee, Yun Oh;Yoon, Kwon-Ha
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.275-276
    • /
    • 2018
  • 본 논문에서는 원광대학교병원 의료정보시스템의 임상데이터를 OHDSI 가 제안하는 공통데이터 모델로 변환하여 표준화 시스템 구축에 대해서 기술한다. 또한, 검색속도 향상을 위해 인덱싱 기법을 적용한 성능평가 결과를 보인다. 구축된 표준화 시스템은 다양한 임상연구에 활용될 것을 기대하고 있다.