Journal of the Korea Society of Computer and Information
/
v.25
no.4
/
pp.149-156
/
2020
In the Fourth Industrial Revolution, successful cases using big data in various industries are reported. This paper examines cases that successfully use big data in the medical industry to develop the service and draws implications in value that big data create. The related work introduces big data technology in the medical field and cases of eight innovative service in the big data service are explained. In the introduction, the overall structure of the study is mentioned by describing the background and direction of this study. In the literature study, we explain the definition and concept of big data, and the use of big data in the medical industry. Next, this study describes the several cases, such as technologies using national health information and personal genetic information for the study of diseases, personal health services using personal biometric information, use of medical data for efficiency of business processes, and medical big data for the development of new medicines. In the conclusion, we intend to provide direction for the academic and business implications of this study, as well as how the results of the study can help the domestic medical industry.
The role of artificial medical intelligence through medical big data has been focused on data-based medical device business and medical service technology development in the field of diagnostic examination of the patient's current condition, clinical decision support, and patient monitoring and management. Recently, with the 4th Industrial Revolution, the medical field changed the medical treatment paradigm from the method of treatment based on the knowledge and experience of doctors in the past to the form of receiving the help of high-precision medical intelligence based on medical data. In addition, due to the spread of non-face-to-face treatment due to the COVID-19 pandemic, it is expected that the era of telemedicine, in which patients will be treated by doctors at home rather than hospitals, will soon come. It can be said that artificial medical intelligence plays a big role at the center of this paradigm shift in prevention-centered treatment rather than treatment. Based on big data, this paper analyzes the current status of artificial intelligence technology for chronic disease patients, market trends, and domestic and foreign company trends to predict the expected effect and future development direction of artificial intelligence technology for chronic disease patients. In addition, it is intended to present the necessity of developing digital therapeutics that can provide various medical services to chronically ill patients and serve as medical support to clinicians.
Conducting AI-based fusion business due to the increment of ICT fusion medical device has been expanded. In addition, AI-based medical devices help change existing medical system on treatment into the paradigm of customized treatment such as preliminary diagnosis and prevention. It will be generally promoted to the change of medical device industry. Although the current demand forecasting of medical biotechnology commercialization is based on the method of Delphi and AHP, there is a problem that it is difficult to have a generalization due to fluctuation results according to a pool of participants. Therefore, the purpose of the paper is to predict demand forecasting for identifying promising technology based on building up big data in medical biotechnology. The development method is to employ candidate technologies of keywords extracted from SCOPUS and to use word2vec for drawing analysis indicator, technological distance similarity, and recommended technological similarity of top-level items in order to achieve a reasonable result. In addition, the method builds up academic big data for 5 years (2016-2020) in order to commercialize technology excavation on demand perspective. Lastly, the paper employs global data studies in order to develop domestic and international demand for technology excavation in the medical biotechnology field.
Heart related special images are classified as Cardiac US, XA, CT, MRI. Several Problem is caused by image compression, control and medical support point, so most big hospitals have created a Cadiac PACS differentially in past years. For this reason, create a conflict in inner colleague and patient, protector that result from 2 data processing server operating independently in 1 medical center area. For this reason, we sugges an alternative model of best medical control process together with understand the current situation on medical facility.
Kim, Seon-Young;Kim, Jae-Min;Yoo, Joon-An;Bae, Kyung-Yeol;Kim, Sung-Wan;Yang, Su-Jin;Shin, Il-Seon;Yoon, Jin-Sang
Korean Journal of Biological Psychiatry
/
v.17
no.1
/
pp.15-25
/
2010
Objectives : The Big Five Inventory(BFI) and the Big Five Inventory-10(BFI-10) are widely used instruments for the evaluation of personality in various cultures, while they have not been formally validated in Korea. This study aimed to develop the Korean versions of BFI(BFI-K) and BFI 10(BFI-K-10) with a Korean elderly population. Methods : The study sample consisted of 1,038 community dwelling elders. BFI-K and BFI-K-10 were administered. For the reliability analyses, scores on Guttmans' split half and Cronbach's ${\alpha}$ were estimated. For the validity analyses, the Korean version of Geriatric Depression Scale(KGDS) and the State-Trait Anxiety Inventory(STAI) were investigated. Results : The reliability of the BFI-K was good(Guttmans' split half=0.59-0.78, Cronbach's ${\alpha}$=0.52-0.75). Scores on the BFI-K-10 were significantly correlated with the scores on BFI-K. Scores on the BFI-K and the BFI-K-10 were significantly correlated with the scores on KGDS and STAI. Conclusion : Both BFI-K and BFI-K-10 might be reliable and valid instruments to evaluate the personality in Korean community elders. BFI-K-10 is short and easy to be administered, and therefore it would be very convenient to use.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.3
/
pp.974-992
/
2021
Recently, the healthcare field has undergone rapid changes owing to the accumulation of health big data and the development of machine learning. Data mining research in the field of healthcare has different characteristics from those of other data analyses, such as the structural complexity of the medical data, requirement for medical expertise, and security of personal medical information. Various methods have been implemented to address these issues, including the machine learning model and cloud platform. However, the machine learning model presents the problem of opaque result interpretation, and the cloud platform requires more in-depth research on security and efficiency. To address these issues, this paper presents a recent technology for Internet-of-Things-based (IoT-based) health big data processing. We present a cloud-based IoT health platform and health big data processing technology that reduces the medical data management costs and enhances safety. We also present a data mining technology for health-risk prediction, which is the core of healthcare. Finally, we propose a study using explainable artificial intelligence that enhances the reliability and transparency of the decision-making system, which is called the black box model owing to its lack of transparency.
Kim, Tae Jung;Lee, Ji Sung;Kim, Ji-Woo;Oh, Mi Sun;Mo, Heejung;Lee, Chan-Hyuk;Jeong, Han-Young;Jung, Keun-Hwa;Lim, Jae-Sung;Ko, Sang-Bae;Yu, Kyung-Ho;Lee, Byung-Chul;Yoon, Byung-Woo
Journal of Korean Medical Science
/
v.33
no.53
/
pp.343.1-343.8
/
2018
Background: Linkage of public healthcare data is useful in stroke research because patients may visit different sectors of the health system before, during, and after stroke. Therefore, we aimed to establish high-quality big data on stroke in Korea by linking acute stroke registry and national health claim databases. Methods: Acute stroke patients (n = 65,311) with claim data suitable for linkage were included in the Clinical Research Center for Stroke (CRCS) registry during 2006-2014. We linked the CRCS registry with national health claim databases in the Health Insurance Review and Assessment Service (HIRA). Linkage was performed using 6 common variables: birth date, gender, provider identification, receiving year and number, and statement serial number in the benefit claim statement. For matched records, linkage accuracy was evaluated using differences between hospital visiting date in the CRCS registry and the commencement date for health insurance care in HIRA. Results: Of 65,311 CRCS cases, 64,634 were matched to HIRA cases (match rate, 99.0%). The proportion of true matches was 94.4% (n = 61,017) in the matched data. Among true matches (mean age 66.4 years; men 58.4%), the median National Institutes of Health Stroke Scale score was 3 (interquartile range 1-7). When comparing baseline characteristics between true matches and false matches, no substantial difference was observed for any variable. Conclusion: We could establish big data on stroke by linking CRCS registry and HIRA records, using claims data without personal identifiers. We plan to conduct national stroke research and improve stroke care using the linked big database.
Purpose: The traditional ethical study only suggests a blurred insight on the research using medical big data, especially in this rapid-changing and demanding environment which is called "4th Industry Revolution." Current institutional/ethical issues in big data research need to approach with the thoughtful insight of past ethical study reflecting the understanding of present conditions of this study. This study aims to examine the ethical issues that are emerging in recent health care big data research. So, this study aims to survey the public perceptions on of health care big data as part of the process of public discourse and the acceptance of the utility and provision of big data research as a subject of health care information. In addition, the emerging ethical challenges and how to comply with ethical principles in accordance with principles of the Belmont report will be discussed. Methods: Survey was conducted from June 3th August to 6th September 2020. The online survey was conducted through voluntary participation through Internet users. A total of 319 people who completed the survey (±5.49%P [95% confidence level] were analyzed. Results: In the area of the public's perspective, the survey showed that the medical information is useful for new medical development, but it is also necessary to obtain consents from subjects in order to use that medical information for various research purposes. In addition, many people were more concerned about the possibility of re-identifying personal information in medical big data. Therefore, they mentioned the necessity of transparency and privacy protection in the use of medical information. Conclusion: Big data on medical care is a core resource for the development of medicine directly related to human life, and it is necessary to open up medical data in order to realize the public good. But the ethical principles should not be overlooked. The right to self-determination must be guaranteed by means of clear, diverse consent or withdrawal of subjects, and processed in a lawful, fair and transparent manner in the processing of personal information. In addition, scientific and ethical validity of medical big data research is indispensable. Such ethical healthcare data is the only key that will lead to innovation in the future.
Yoon, Hyun Jin;Jeong, Young Jin;Kang, Hyun;Jeong, Ji Eun;Kang, Do-Young
Progress in Medical Physics
/
v.30
no.2
/
pp.49-58
/
2019
Purpose: Automated analytical systems have begun to emerge as a database system that enables the scanning of medical images to be performed on computers and the construction of big data. Deep-learning artificial intelligence (AI) architectures have been developed and applied to medical images, making high-precision diagnosis possible. Materials and Methods: For diagnosis, the medical images need to be labeled and standardized. After pre-processing the data and entering them into the deep-learning architecture, the final diagnosis results can be obtained quickly and accurately. To solve the problem of overfitting because of an insufficient amount of labeled data, data augmentation is performed through rotation, using left and right flips to artificially increase the amount of data. Because various deep-learning architectures have been developed and publicized over the past few years, the results of the diagnosis can be obtained by entering a medical image. Results: Classification and regression are performed by a supervised machine-learning method and clustering and generation are performed by an unsupervised machine-learning method. When the convolutional neural network (CNN) method is applied to the deep-learning layer, feature extraction can be used to classify diseases very efficiently and thus to diagnose various diseases. Conclusions: AI, using a deep-learning architecture, has expertise in medical image analysis of the nerves, retina, lungs, digital pathology, breast, heart, abdomen, and musculo-skeletal system.
Kim, Seung-Jin;Jeong, Chang-Won;No, Si-Hyeong;Kim, Ji-Eon;Kim, Tae-Hoon;Jun, Hong Yong;Lee, Yun Oh;Yoon, Kwon-Ha
Proceedings of the Korea Information Processing Society Conference
/
2018.05a
/
pp.275-276
/
2018
본 논문에서는 원광대학교병원 의료정보시스템의 임상데이터를 OHDSI 가 제안하는 공통데이터 모델로 변환하여 표준화 시스템 구축에 대해서 기술한다. 또한, 검색속도 향상을 위해 인덱싱 기법을 적용한 성능평가 결과를 보인다. 구축된 표준화 시스템은 다양한 임상연구에 활용될 것을 기대하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.