• Title/Summary/Keyword: Big data traffic

Search Result 241, Processing Time 0.024 seconds

Analysis of Traffic Card Big Data by Hadoop and Sequential Mining Technique (하둡과 순차패턴 마이닝 기술을 통한 교통카드 빅데이터 분석)

  • Kim, Woosaeng;Kim, Yong Hoon;Park, Hee-Sung;Park, Jin-Kyu
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.4
    • /
    • pp.187-196
    • /
    • 2017
  • It is urgent to prepare countermeasures for traffic congestion problems of Korea's metropolitan area where central functions such as economic, social, cultural, and education are excessively concentrated. Most users of public transportation in metropolitan areas including Seoul use the traffic cards. If various information is extracted from traffic big data produced by the traffic cards, they can provide basic data for transport policies, land usages, or facility plans. Therefore, in this study, we extract valuable information such as the subway passengers' frequent travel patterns from the big traffic data provided by the Seoul Metropolitan Government Big Data Campus. For this, we use a Hadoop (High-Availability Distributed Object-Oriented Platform) to preprocess the big data and store it into a Mongo database in order to analyze it by a sequential pattern data mining technique. Since we analysis the actual big data, that is, the traffic cards' data provided by the Seoul Metropolitan Government Big Data Campus, the analyzed results can be used as an important referenced data when the Seoul government makes a plan about the metropolitan traffic policies.

Big Data Analysis and Prediction of Traffic in Los Angeles

  • Dauletbak, Dalyapraz;Woo, Jongwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.841-854
    • /
    • 2020
  • The paper explains the method to process, analyze and predict traffic patterns in Los Angeles county using Big Data and Machine Learning. The dataset is used from a popular navigating platform in the USA, which tracks information on the road using connected users' devices and also collects reports shared by the users through the app. The dataset mainly consists of information about traffic jams and traffic incidents reported by users, such as road closure, hazards, accidents. The major contribution of this paper is to give a clear view of how the large-scale road traffic data can be stored and processed using the Big Data system - Hadoop and its ecosystem (Hive). In addition, analysis is explained with the help of visuals using Business Intelligence and prediction with classification machine learning model on the sampled traffic data is presented using Azure ML. The process of modeling, as well as results, are interpreted using metrics: accuracy, precision and recall.

Design and Implementation of a Realtime Public Transport Route Guidance System using Big Data Analysis (빅데이터 분석 기법을 이용한 실시간 대중교통 경로 안내 시스템의 설계 및 구현)

  • Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.2
    • /
    • pp.460-468
    • /
    • 2019
  • Recently, analysis techniques to extract new meanings using big data analysis and various services using these analysis techniques have been developed. Among them, the transport is one of the most important areas that can be utilized about big data. However, the existing traffic route guidance system can not recommend the optimal traffic route because they use only the traffic information when the user search the route. In this paper, we propose a realtime optimal traffic route guidance system using big data analysis. The proposed system considers the realtime traffic information and results of big data analysis using historical traffic data. And, the proposed system show the warning message to the user when the user need to change the traffic route.

On the Design of a Big Data based Real-Time Network Traffic Analysis Platform (빅데이터 기반의 실시간 네트워크 트래픽 분석 플랫폼 설계)

  • Lee, Donghwan;Park, Jeong Chan;Yu, Changon;Yun, Hosang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.721-728
    • /
    • 2013
  • Big data is one of the most spotlighted technological trends in these days, enabling new methods to handle huge volume of complicated data for a broad range of applications. Real-time network traffic analysis essentially deals with big data, which is comprised of different types of log data from various sensors. To tackle this problem, in this paper, we devise a big data based platform, RENTAP, to detect and analyse malicious network traffic. Focused on military network environment such as closed network for C4I systems, leading big data based solutions are evaluated to verify which combination of the solutions is the best design for network traffic analysis platform. Based on the selected solutions, we provide detailed functional design of the suggested platform.

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

Design of Client-Server Model For Effective Processing and Utilization of Bigdata (빅데이터의 효과적인 처리 및 활용을 위한 클라이언트-서버 모델 설계)

  • Park, Dae Seo;Kim, Hwa Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.109-122
    • /
    • 2016
  • Recently, big data analysis has developed into a field of interest to individuals and non-experts as well as companies and professionals. Accordingly, it is utilized for marketing and social problem solving by analyzing the data currently opened or collected directly. In Korea, various companies and individuals are challenging big data analysis, but it is difficult from the initial stage of analysis due to limitation of big data disclosure and collection difficulties. Nowadays, the system improvement for big data activation and big data disclosure services are variously carried out in Korea and abroad, and services for opening public data such as domestic government 3.0 (data.go.kr) are mainly implemented. In addition to the efforts made by the government, services that share data held by corporations or individuals are running, but it is difficult to find useful data because of the lack of shared data. In addition, big data traffic problems can occur because it is necessary to download and examine the entire data in order to grasp the attributes and simple information about the shared data. Therefore, We need for a new system for big data processing and utilization. First, big data pre-analysis technology is needed as a way to solve big data sharing problem. Pre-analysis is a concept proposed in this paper in order to solve the problem of sharing big data, and it means to provide users with the results generated by pre-analyzing the data in advance. Through preliminary analysis, it is possible to improve the usability of big data by providing information that can grasp the properties and characteristics of big data when the data user searches for big data. In addition, by sharing the summary data or sample data generated through the pre-analysis, it is possible to solve the security problem that may occur when the original data is disclosed, thereby enabling the big data sharing between the data provider and the data user. Second, it is necessary to quickly generate appropriate preprocessing results according to the level of disclosure or network status of raw data and to provide the results to users through big data distribution processing using spark. Third, in order to solve the problem of big traffic, the system monitors the traffic of the network in real time. When preprocessing the data requested by the user, preprocessing to a size available in the current network and transmitting it to the user is required so that no big traffic occurs. In this paper, we present various data sizes according to the level of disclosure through pre - analysis. This method is expected to show a low traffic volume when compared with the conventional method of sharing only raw data in a large number of systems. In this paper, we describe how to solve problems that occur when big data is released and used, and to help facilitate sharing and analysis. The client-server model uses SPARK for fast analysis and processing of user requests. Server Agent and a Client Agent, each of which is deployed on the Server and Client side. The Server Agent is a necessary agent for the data provider and performs preliminary analysis of big data to generate Data Descriptor with information of Sample Data, Summary Data, and Raw Data. In addition, it performs fast and efficient big data preprocessing through big data distribution processing and continuously monitors network traffic. The Client Agent is an agent placed on the data user side. It can search the big data through the Data Descriptor which is the result of the pre-analysis and can quickly search the data. The desired data can be requested from the server to download the big data according to the level of disclosure. It separates the Server Agent and the client agent when the data provider publishes the data for data to be used by the user. In particular, we focus on the Big Data Sharing, Distributed Big Data Processing, Big Traffic problem, and construct the detailed module of the client - server model and present the design method of each module. The system designed on the basis of the proposed model, the user who acquires the data analyzes the data in the desired direction or preprocesses the new data. By analyzing the newly processed data through the server agent, the data user changes its role as the data provider. The data provider can also obtain useful statistical information from the Data Descriptor of the data it discloses and become a data user to perform new analysis using the sample data. In this way, raw data is processed and processed big data is utilized by the user, thereby forming a natural shared environment. The role of data provider and data user is not distinguished, and provides an ideal shared service that enables everyone to be a provider and a user. The client-server model solves the problem of sharing big data and provides a free sharing environment to securely big data disclosure and provides an ideal shared service to easily find big data.

Assessment of External Force Acting on Ship Using Big Data in Maritime Traffic (해상교통 빅데이터에 의한 선박에 작용하는 외력영향 평가에 관한 연구)

  • Kim, Kwang-Il;Jeong, Jung Sik;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.379-384
    • /
    • 2013
  • For effective ship management in VTS(Vessel Traffic Service), it needs to assess the external force acting on ship. Big data in maritime traffic can be roughly categorized into two groups. One is the traffic information including ship's particulars. The other is the external force information e.g., wind, sea wave, tidal current. This paper proposes the method to assess the external force acting on ship using big data in maritime traffic. To approach Big data in maritime traffic, we propose the Waterway External Force Code(WEF code) which consist of wind, wave, tidal and current information, Speed Over the Water(SOW) of each ship, weather information. As a results, the external force acting a navigating ship is estimated.

Analysis of Urban Traffic Network Structure based on ITS Big Data (ITS 빅데이터를 활용한 도시 교통네트워크 구조분석)

  • Kim, Yong Yeon;Lee, Kyung-Hee;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.1-7
    • /
    • 2017
  • Intelligent transportation system (ITS) has been introduced to maximize the efficiency of operation and utilization of the urban traffic facilities and promote the safety and convenience of the users. With the expansion of ITS, various traffic big data such as road traffic situation, traffic volume, public transportation operation status, management situation, and public traffic use status have been increased exponentially. In this paper, we derive structural characteristics of urban traffic according to the vehicle flow by using big data network analysis. DSRC (Dedicated Short Range Communications) data is used to construct the traffic network. The results can help to understand the complex urban traffic characteristics more easily and provide basic research data for urban transportation plan such as road congestion resolution plan, road expansion plan, and bus line/interval plan in a city.

  • PDF

A Study on Prediction of Traffic Volume Using Road Management Big Data

  • Sung, Hongki;Chong, Kyusoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.589-594
    • /
    • 2015
  • In reflection of road expansion and increasing use rates, interest has blossomed in predicting driving environment. In addition, a gigantic scale of big data is applied to almost every area around the world. Recently, technology development is being promoted in the area of road traffic particularly for traffic information service and analysis system in utilization of big data. This study examines actual cases of road management systems and road information analysis technologies, home and abroad. Based on the result, the limitations of existing technologies and road management systems are analyzed. In this study, a development direction and expected effort of the prediction of road information are presented. This study also examines regression analysis about relationship between guide name and traffic volume. According to the development of driving environment prediction platform, it will be possible to serve more reliable road information and also it will make safe and smart road infrastructures.

Analysis of Elderly Traffic Accidents Using Public Data (공공데이터를 활용한 노인교통사고 발생유형 분석연구)

  • Lee, Jeongwon;Lee, Choong Ho
    • Journal of Industrial Convergence
    • /
    • v.17 no.4
    • /
    • pp.53-58
    • /
    • 2019
  • It is important to collect and analyze the data from the traffic accident analysis system and the National Statistical Office to reduce the traffic accident rate of the elderly, who are the weakest. In particular, it is more important to analyze the data in areas where the elderly population is large and where accidents occur frequently. This paper visualizes and analyzes the data of elderly traffic accidents that occurred in recent 5 years in the area where many elderly people live in Buyeo-gun. The elderly traffic accident type, accident area, and location data of the elderly can be useful for the improvement measures and related decision making to reduce the elderly traffic accidents.