• 제목/요약/키워드: Big data traffic

검색결과 241건 처리시간 0.026초

하둡과 순차패턴 마이닝 기술을 통한 교통카드 빅데이터 분석 (Analysis of Traffic Card Big Data by Hadoop and Sequential Mining Technique)

  • 김우생;김용훈;박희성;박진규
    • Journal of Information Technology Applications and Management
    • /
    • 제24권4호
    • /
    • pp.187-196
    • /
    • 2017
  • It is urgent to prepare countermeasures for traffic congestion problems of Korea's metropolitan area where central functions such as economic, social, cultural, and education are excessively concentrated. Most users of public transportation in metropolitan areas including Seoul use the traffic cards. If various information is extracted from traffic big data produced by the traffic cards, they can provide basic data for transport policies, land usages, or facility plans. Therefore, in this study, we extract valuable information such as the subway passengers' frequent travel patterns from the big traffic data provided by the Seoul Metropolitan Government Big Data Campus. For this, we use a Hadoop (High-Availability Distributed Object-Oriented Platform) to preprocess the big data and store it into a Mongo database in order to analyze it by a sequential pattern data mining technique. Since we analysis the actual big data, that is, the traffic cards' data provided by the Seoul Metropolitan Government Big Data Campus, the analyzed results can be used as an important referenced data when the Seoul government makes a plan about the metropolitan traffic policies.

Big Data Analysis and Prediction of Traffic in Los Angeles

  • Dauletbak, Dalyapraz;Woo, Jongwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.841-854
    • /
    • 2020
  • The paper explains the method to process, analyze and predict traffic patterns in Los Angeles county using Big Data and Machine Learning. The dataset is used from a popular navigating platform in the USA, which tracks information on the road using connected users' devices and also collects reports shared by the users through the app. The dataset mainly consists of information about traffic jams and traffic incidents reported by users, such as road closure, hazards, accidents. The major contribution of this paper is to give a clear view of how the large-scale road traffic data can be stored and processed using the Big Data system - Hadoop and its ecosystem (Hive). In addition, analysis is explained with the help of visuals using Business Intelligence and prediction with classification machine learning model on the sampled traffic data is presented using Azure ML. The process of modeling, as well as results, are interpreted using metrics: accuracy, precision and recall.

빅데이터 분석 기법을 이용한 실시간 대중교통 경로 안내 시스템의 설계 및 구현 (Design and Implementation of a Realtime Public Transport Route Guidance System using Big Data Analysis)

  • 임종태;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제19권2호
    • /
    • pp.460-468
    • /
    • 2019
  • 최근 빅데이터 분석을 통해 새로운 정보들을 도출해내기 위한 분석 기법들과 이를 이용한 다양한 서비스들이 개발되고 있다. 그 중에서 빅데이터가 중요하게 활용될 수 있는 분야 중의 하나가 교통 분야이다. 기존 대중교통 안내 서비스의 경우 현재 교통정보를 기준으로 추천하기 때문에 실제로는 최적이 아닌 경로가 추천될 수 있다. 본 논문에서는 빅데이터 분석을 통한 실시간 최적 교통 경로 안내 시스템을 설계하고 구현한다. 설계한 시스템은 실시간 교통정보를 활용함과 동시에 과거 수집된 교통 정보를 분석하여 각 경로들의 교통 상황을 예측하여 경로 이동 계획을 설정해준다. 또한 중간에 교통상황이 급변하여 경로를 수정해야할 필요가 있을 때 사용자에게 알림을 주고 그에 대한 조치를 취할 수 있도록 지원한다.

빅데이터 기반의 실시간 네트워크 트래픽 분석 플랫폼 설계 (On the Design of a Big Data based Real-Time Network Traffic Analysis Platform)

  • 이동환;박정찬;유찬곤;윤호상
    • 정보보호학회논문지
    • /
    • 제23권4호
    • /
    • pp.721-728
    • /
    • 2013
  • 빅데이터는 오늘날 가장 각광받고 있는 데이터 수집 및 분석기술의 경향으로, 대량의 비정형 데이터 분석을 요구하는 다양한 분야에 접목되어 효용성을 인정받고 있다. 네트워크 트래픽 분석 역시 대량의 비정형 데이터를 다루는 분야로, 빅데이터 접목시 그 효과가 극대화될 수 있다. 따라서 본 논문에서는 고도의 보안이 요구되는 군 C4I망과 같은 내부망 환경의 침해사고 및 이상행위를 실시간으로 탐지하기 위한 빅데이터 기반의 네트워크 트래픽 분석 플랫폼(RENTAP)을 소개한다. 빅데이터 분석 지원을 위해 최근 각광받고 있는 오픈소스 솔루션들을 대상으로 비교 분석을 수행하였으며, 선정된 솔루션을 기반으로 고안된 최종 설계에 대해서 설명한다.

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

빅데이터의 효과적인 처리 및 활용을 위한 클라이언트-서버 모델 설계 (Design of Client-Server Model For Effective Processing and Utilization of Bigdata)

  • 박대서;김화종
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.109-122
    • /
    • 2016
  • 최근 빅데이터 분석은 기업과 전문가뿐만 아니라 개인이나 비전문가들도 큰 관심을 갖는 분야로 발전하였다. 그에 따라 현재 공개된 데이터 또는 직접 수집한 이터를 분석하여 마케팅, 사회적 문제 해결 등에 활용되고 있다. 국내에서도 다양한 기업들과 개인이 빅데이터 분석에 도전하고 있지만 빅데이터 공개의 제한과 수집의 어려움으로 분석 초기 단계에서부터 어려움을 겪고 있다. 본 논문에서는 빅데이터 공유를 방해하는 개인정보, 빅트래픽 등의 요소들에 대한 기존 연구와 사례들을 살펴보고 정책기반의 해결책이 아닌 시스템을 통해서 빅데이터 공유 제한 문제를 해결 할 수 있는 클라이언트-서버 모델을 이용해 빅데이터를 공개 및 사용 할 때 발생하는 문제점들을 해소하고 공유와 분석 활성화를 도울 수 있는 방안에 대해 기술한다. 클라이언트-서버 모델은 SPARK를 활용해 빠른 분석과 사용자 요청을 처리하며 Server Agent와 Client Agent로 구분해 데이터 제공자가 데이터를 공개할 때 서버 측의 프로세스와 데이터 사용자가 데이터를 사용하기 위한 클라이언트 측의 프로세스로 구분하여 설명한다. 특히, 빅데이터 공유, 분산 빅데이터 처리, 빅트래픽 문제에 초점을 맞추어 클라이언트-서버 모델의 세부 모듈을 구성하고 각 모듈의 설계 방법에 대해 제시하고자 한다. 클라이언트-서버 모델을 통해서 빅데이터 공유문제를 해결하고 자유로운 공유 환경을 구성하여 안전하게 빅데이터를 공개하고 쉽게 빅데이터를 찾는 이상적인 공유 서비스를 제공할 수 있다.

해상교통 빅데이터에 의한 선박에 작용하는 외력영향 평가에 관한 연구 (Assessment of External Force Acting on Ship Using Big Data in Maritime Traffic)

  • 김광일;정중식;박계각
    • 한국지능시스템학회논문지
    • /
    • 제23권5호
    • /
    • pp.379-384
    • /
    • 2013
  • 해상교통관제센터(Vessel Traffic Service, VTS)에서 항해중인 선박의 효과적인 관리를 위해 선박에 영향을 주는 외력에 대한 평가가 필요하다. 해상교통 빅데이터는 크게 선박 제원 및 통항정보 등 선박에 의하여 수집되는 정보가 있으며, 다른 하나는 해역에 관련된 바람, 파고, 조류흐름의 외력정보가 있다. 본 연구에서는 이러한 해상교통 빅데이터를 활용하여 선박에 영향을 주는 외력영향을 평가하는 방법에 대해 제안한다. 해상교통 빅데이터를 활용하기 위하여 바람, 파도, 조류 정보, 대수속력(Speed Over Water, SOW)에 대한 정보로 구성되는 해역외력코드(Waterway External Force Code)를 사용하였다. 해역외력코드를 데이터베이스로 하여 그 결과로서 선박에 작용하는 외력영향을 추정하였다.

ITS 빅데이터를 활용한 도시 교통네트워크 구조분석 (Analysis of Urban Traffic Network Structure based on ITS Big Data)

  • 김용연;이경희;조완섭
    • 한국빅데이터학회지
    • /
    • 제2권2호
    • /
    • pp.1-7
    • /
    • 2017
  • ITS(Intelligent Transport Systems)는 시민들의 교통이용 안전과 편의를 도모하고 교통 시스템의 효율적인 운영 및 관리를 위해 대도시를 중심으로 도입되었다. 우리나라의 경우 ITS가 전국적으로 확대되면서 도로소통상황, 교통량, 대중교통운영현황 및 관리상황, 대중교통이용현황 등 다양한 교통정보가 생성되고 있다. 본 논문에서는 ITS에서 수집되는 데이터 중 하나인 DSRC(Dedicated Short Range Communications) 빅데이터를 활용하여 도시 교통구조를 네트워크 분석 기법을 통해 규명한다. 이를 통해 도심에서의 복잡한 교통현상을 단순화시키고, 차량 흐름에 따른 도시 교통의 구조적 특징을 도출한다. 분석 결과는 도시의 교통을 좀 더 쉽게 이해할 수 있도록 도와주고, 향후에 도시교통의 혼잡 해소방안, 도로 확장 계획 등의 교통정책 수립시 기초연구 자료로 활용할 수 있다.

  • PDF

A Study on Prediction of Traffic Volume Using Road Management Big Data

  • Sung, Hongki;Chong, Kyusoo
    • 한국측량학회지
    • /
    • 제33권6호
    • /
    • pp.589-594
    • /
    • 2015
  • In reflection of road expansion and increasing use rates, interest has blossomed in predicting driving environment. In addition, a gigantic scale of big data is applied to almost every area around the world. Recently, technology development is being promoted in the area of road traffic particularly for traffic information service and analysis system in utilization of big data. This study examines actual cases of road management systems and road information analysis technologies, home and abroad. Based on the result, the limitations of existing technologies and road management systems are analyzed. In this study, a development direction and expected effort of the prediction of road information are presented. This study also examines regression analysis about relationship between guide name and traffic volume. According to the development of driving environment prediction platform, it will be possible to serve more reliable road information and also it will make safe and smart road infrastructures.

공공데이터를 활용한 노인교통사고 발생유형 분석연구 (Analysis of Elderly Traffic Accidents Using Public Data)

  • 이정원;이충호
    • 산업융합연구
    • /
    • 제17권4호
    • /
    • pp.53-58
    • /
    • 2019
  • 교통약자인 노인 교통사고율을 줄이기 위하여 교통사고분석시스템과 통계청의 데이터를 수집하고 분석하는 것이 중요하다. 특히 노인 인구가 많이 거주하는 지역과 노인 교통사고가 자주 발생하는 지역에 해당하는 데이터 분석은 더욱 중요하다. 본 논문은 부여군 내의 노인이 많이 거주하는 지역에서 특정한 기간에 발생한 노인 교통사고 데이터를 빅데이터 분석기법으로 시각화 하고 분석하였다. 본 연구의 분석결과로 생성된 노인 교통사고 사고유형, 사고 다발지역, 노인 위치 자료 등은 노인 교통사고를 감소시키기 위한 개선책 및 관련 의사결정에 유용하게 활용될 수 있다.