• Title/Summary/Keyword: Big data collection

Search Result 348, Processing Time 0.03 seconds

Research Trend Analysis for Sustainable QR code use - Focus on Big Data Analysis

  • Lee, Eunji;Jang, Jikyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3221-3242
    • /
    • 2021
  • The purpose of the study is to examine the current study trend of 'QR code' and suggest a direction for the future study of big data analysis: (1) Background: study trend of 'QR code' and analysis of the text by subject field and year; (2) Methodology: data scraping and collection, EXCEL summary, and preprocess and big data analysis by R x 64 4.0.2 program package; (3) the findings: first, the trend showed a continuous increase in 'QR code' studies in general and the findings were applied in various fields. Second, the analysis of frequent keywords showed somewhat different results by subject field and year, but the overall results were similar. Third, the visualization of the frequent keywords also showed similar results as that of frequent keyword analysis; and (4) the conclusions: in general, 'QR code' studies are used in various fields, and the trend is likely to increase in the future as well. And the findings of this study are a reflection that 'QR code' is an aspect of our social and cultural phenomena, so that it is necessary to think that 'QR code' is a tool and an application of information. An expansion of the scope of the analysis is expected to show us more meaningful indications on 'QR code' study trends and development potential.

Smart Tourism Information System and IoT Data Collection Devices for Location-based Tourism and Tourist Safety Services

  • Ko, Tae-Seung;Kim, Byeong-Joo;Jwa, Jeong-Woo
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.310-316
    • /
    • 2022
  • The smart tourism service provides services such as travel planning and tour guides to tourists using key technologies of the 4th industrial revolution, such as the Internet of Things, communication infrastructure, big data, artificial intelligence, AR/VR, and drones. We are developing smart tourism services such as recommended travel products, my travel itinerary, tourism information, and chatbots for tourists through the smart tourism app. In this paper, we develop a smart tourism service system that provides real-time location-based tourism information and weather information to tourists. The smart tourism service system consists of a smart tourism app, a smart tourism information system, and an IoT data collection device. The smart tourism information system receives weather information from the IoT data collection device installed in the tourist destination. The location-based smart tourism service is provided as a smart tourism app in the smart tourism information system according to the Beacon's UUID in the IoT data collection device. The smart tourism information system stores the Beacon's UUIDs received from tourists and provides a safe hiking service for tourists.

The Perception of Gorpcore Look Using Big Data (빅 데이터를 활용한 고프코어 룩에 대한 인식)

  • Ji-Woo Kim;Jeong-Mee Kim
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.4
    • /
    • pp.77-92
    • /
    • 2023
  • The purpose of this study is to investigate the public perception of Gorpcore through Big Aata analytics. The study was conducted based on the collection of Big Data on the word 'Gorpcore' through Textom from July 24, 2017 to March 31, 2023. As a result, 63,386 words were collected from a total of 18,879 posts, and the top 50 words were determined based on frequency of appearance. Based on the collected words, centrality measures and CONCOR algorithm were performed in Ucinet 6. The research results are as follows. 1) The frequency of appearance was high in the order of 'Gorpcore look', 'fashion', 'coordination', 'clothes', 'outdoor', 'Musinsa', 'look', 'trend', 'brand' and 'ahjussi (middle-aged old man in Korean)'. These words had high TF-IDF scores, which leads to the conclusion that these are key words that are recognized as important. 2) Network centrality shows that 'Gorpcore look', 'fashion', 'outdoor', 'coordination', 'clothes', 'trend', 'look' and 'style' have a high correlation with other words. Through this, it was found that the public thinks it is important to create a variety of fashions by styling high-performance outdoor wear and casual wear, and that they are highly interested in clothes and in brands leading the Gorpcore trend. 3) As a result of the CONCOR algorithm, four significant groups were formed. The words that appear in each group are as follows. Group 1 - 'outdoor', 'Gorp', 'Normcore', 'hiking', 'functionality', 'new', 'sports', 'casual wear', 'activity', 'generation', 'collaboration'. Group 2 - 'fashion', 'trend', 'look', 'brand', 'style', 'shoes', 'ugly', 'item', 'trend', 'product', 'Salomon', 'padded jacket', 'stylishness', 'utilization', 'Winter', 'street', 'design', 'retro', 'popular', 'styling'. Group 3 - 'Gorpcore look', 'coordination', 'Musinsa', 'windbreaker', 'recommendation', 'Arcteryx', 'pants', 'man'. Group 4 - 'clothes' 'ahjussi', 'jacket', 'launching', 'spring', 'The North Face', 'collection', 'utility', 'jumper'. As a result, it can be seen that the Gorpcore is also regarded as a part of outdoor, fashion, coordination, and casual wear.

Ontology Development of School Bullying for Social Big Data Collection and Analysis (소셜빅데이터 수집 및 분석을 위한 아동청소년 학교폭력 온톨로지 개발)

  • Han, Yoonsun;Kim, Hayoung;Song, Juyoung;Song, Tae Min
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.6
    • /
    • pp.10-23
    • /
    • 2019
  • Although social big data can provide a multi-faceted perspective on school bullying experiences among children and adolescents, the complexity and variety of unstructured text presents a challenge for systematic collection and analysis of the data. Development of an ontology, which identifies key terms and their intricate relationships, is crucial for extracting key concepts and effectively collecting data. The current study elaborated on the definition of an ontology, carefully described the 7 stage development process, and applied the ontology for collecting and analyzing school bullying social big data. As a result, approximately 2,400 key terms were extracted in top-, middle-, and lower-level categories, concerning domains of participants, causes, types, location, region, and intervention. The study contributes to the literature by explaining the ontology development process and proposing a novel alternative research model that uses social big data in school bullying research. Findings from this ontology study may provide a basis for social big data research. Practical implications of this study lie in not only helping to understand the experience of school bullying participants, but also in offering a macro perspective on school bullying as a social phenomenon.

Development of a Matadata-based Green Building Information Management System for AEC Industries

  • OH, Minho;LIM, Se Young;KIM, Yong Hee;LEE, Tae Dong
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.646-647
    • /
    • 2015
  • Green building information used by the AEC industry is diverse and extensive), causing difficulties for personnel regarding the collection and utilization of information in the form of inaccurate searches about related laws, inefficient management of searched information and overlapping works. Therefore, this research aims to propose a law search system utilizing metadata for more accurate and efficient searches of green building information. The proposed system is expected to contribute to improve productivity of construction projects by reinforcing the accuracy and efficiency of searches for the collection and utilization of green building information.

  • PDF

Suggested social media big data consulting chatbot service for restaurant start-ups

  • Jong-Hyun Park;Jun-Ho Park;Ki-Hwan Ryu
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.68-74
    • /
    • 2023
  • The food industry has been hit hard since the first outbreak of COVID-19 in 2019. However, as of April 2022, social distancing has been resolved and the restaurant industry has gradually recovered, interest in restaurant start-ups is increasing. Therefore, in this paper, 'restaurant start-up' was cited as a key keyword through social media big data analysis using TexTom, and word frequency and cone analysis were conducted for big data analysis. The keyword collection period was selected from May 1, 2022, when social distancing due to COVID-19 was lifted, to May 23, 2023, and based on this, a plan to develop chatbot services for restaurant start-ups was proposed. This paper was prepared in consideration of what to consider when starting a restaurant and a chatbot service that allows prospective restaurant founders to receive information more conveniently. Based on these analysis results, we expected to contribute to the process of developing chatbots for prospective restaurant founders in the future

Implementation of High Speed Big Data Processing System using In Memory Data Grid in Semiconductor Process (반도체 공정에서 인 메모리 데이터 그리드를 이용한 고속의 빅데이터 처리 시스템 구현)

  • Park, Jong-Beom;Lee, Alex;Kim, Tony
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.125-133
    • /
    • 2016
  • Data processing capacity and speed are rapidly increasing due to the development of hardware and software in recent time. As a result, data usage is geometrically increasing and the amount of data which computers have to process has already exceeded five-thousand transaction per second. That is, the importance of Big Data is due to its 'real-time' and this makes it possible to analyze all the data in order to obtain accurate data at right time under any circumstances. Moreover, there are many researches about this as construction of smart factory with the application of Big Data is expected to have reduction in development, production, and quality management cost. In this paper, system using In-Memory Data Grid for high speed processing is implemented in semiconductor process which numerous data occur and improved performance is proven with experiments. Implemented system is expected to be possible to apply on not only the semiconductor but also any fields using Big Data and further researches will be made for possible application on other fields.

A Study on the Big Data Analysis and Predictive Models for Quality Issues in Defense C5ISR (국방 C5ISR 분야 품질문제의 빅데이터 분석 및 예측 모델에 대한 연구)

  • Hyoung Jo Huh;Sujin Ko;Seung Hyun Baek
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.551-571
    • /
    • 2023
  • Purpose: The purpose of this study is to propose useful suggestions by analyzing the causal effect relationship between the failure rate of quality and the process variables in the C5ISR domain of the defense industry. Methods: The collected data through the in house Systems were analyzed using Big data analysis. Data analysis between quality data and A/S history data was conducted using the CRISP-DM(Cross-Industry Standard Process for Data Mining) analysis process. Results: The results of this study are as follows: After evaluating the performance of candidate models for the influence of inspection data and A/S history data, logistic regression was selected as the final model because it performed relatively well compared to the decision tree with an accuracy of 82%/67% and an AUC of 0.66/0.57. Based on this model, we estimated the coefficients using 'R', a data analysis tool, and found that a specific variable(continuous maximum discharge current time) had a statistically significant effect on the A/S quality failure rate and it was analysed that 82% of the failure rate could be predicted. Conclusion: As the first case of applying big data analysis to quality issues in the defense industry, this study confirms that it is possible to improve the market failure rates of defense products by focusing on the measured values of the main causes of failures derived through the big data analysis process, and identifies improvements, such as the number of data samples and data collection limitations, to be addressed in subsequent studies for a more reliable analysis model.

A Study on Changes in Korean Image of Foreign Tourists Using Big Data - Post COVID-19 -

  • Yoo, Kyoung-Mi;Choi, Youn-Hee;Ryu, Gi-Hwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.72-78
    • /
    • 2021
  • Currently, the Korean wave is not limited to popular culture, but has a significant impact not only on Korea's national image but also on the improvement of Korean companies' products and image of Korea. In this study, using Textom to confirm the change in foreign tourists' image of Korea, the data collection period was 1 year of 2020, when COVID 19 occurred, as a collection period for "Korea and foreigner" and related key words, each Hallyu content, and ranked in the top 80 keywords were derived. Centrality analysis for semantic network visualization was performed using UCINET6, and through CONCOR analysis, 7 groups 'K-Quarantine ', 'K-Drama', 'K-Movie', 'K-Beauty', 'K-Shopping', It was clustered into 'K-Tech' and 'K-Pop'. As a result of the analysis, the image of Korea abroad generally recognized the Korean Wave as cultural content, but after the outbreak of COVID 19, it is judged that it has been recognized as a country with a successful case of K-Quarantine.

Analysis of Smart Tourism Issues Using Social Big Data Analysis

  • Se-won Jeon;Gi-Hwan Ryu
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.300-305
    • /
    • 2024
  • Smart tourism enhances communication between tourists and residents, improves quality of life, increases the utilization of local tourism resources, and helps manage cities efficiently. This paper analyzes recent issues and trends in smart tourism, derives key factors for activating smart tourism based on the analyzed data, and conducts research on promoting smart tourism. Using smart tourism as a keyword, data was collected through Textom. The collection scope included a total of 33,588 pieces of data related to smart tourism over the past year, from May 1, 2023, to May 1, 2024. The data was analyzed using text mining and social network analysis techniques. Through this analysis, the paper suggests directions for the development of smart tourism, enabling the activation of local tourism and effective urban management.