• Title/Summary/Keyword: Big data Processing

Search Result 1,063, Processing Time 0.031 seconds

Design of an Efficient Electrocardiogram Measurement System based on Bluetooth Network using Sensor Network (Bluetooth기반의 센서네트워크를 이용한 효율적인 심전도 측정시스템 설계)

  • Kim, Sun-Jae;Oh, Won-Wook;Lee, Chang-Soo;Min, Byoung-Muk;Oh, Hae-Seok
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.699-706
    • /
    • 2009
  • The convergence tendency accelerates the realization of the ubiquitous healthcare (u-Healthcare) between the technology including the power generaation and IT-BT-NT of the ubiquitous computing technology. By rapidly analyzing a large amount of collected from the sensor network with processing and delivering to the medical team an u-Healthcare can provide a patient for an inappropriate regardless of the time and place. As to the existing u-Healthcare, since the sensor node all transmitted collected data by using with the Zigbee protocol the processing burden of the base node was big and there was many communication frequency of the sensor node. In this paper, the u-Healthcare system in which it can efficiently apply to mobile apparatuses it provided the transfer rate in which it is superior to the bio-signal delivery where there are the life and direct relation which by using the Bluetooth instead of the Zigbee protocol and in which it is variously used in the ubiquitous environment was designed. Moreover, by applying the EEF(Embedded Event Filtering) technique in which data in which it includes in the event defined in advance selected and it transmits with the base node, the communication frequency and were reduced. We confirmed to be the system in which it is efficient through the simulation result than the existing Electrocardiogram Measurement system.

Artifacts in Digital Radiography (디지털 방사선 시스템에서 발생하는 Artifact)

  • Min, Jung-Whan;Kim, Jung-Min;Jeong, Hoi-Woun
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.375-381
    • /
    • 2015
  • Digital Radiography is a big part of diagnostic radiology. Because uncorrected digital radiography image supported false effect of Patient's health care. We must be manage the correct digital radiography image. Thus, the artifact images can have effect to make a wrong diagnosis. We report types of occurrence by analyzing the artifacts that occurs in digital radiography system. We had collected the artifacts occurred in digital radiography system of general hospital from 2007 to 2014. The collected data had analyzed and then had categorize as the occurred causes. The artifacts could be categorized by hardware artifacts, software artifacts, operating errors, system artifacts, and others. Hardware artifact from a Ghost artifact that is caused by lag effect occurred most frequently. The others cases are the artifacts caused by RF noise and foreign body in equipments. Software artifacts are many different types of reasons. The uncorrected processing artifacts and the image processing error artifacts occurred most frequently. Exposure data recognize (EDR) error artifacts, the processing error of commissural line, and etc., the software artifacts were caused by various reasons. Operating artifacts were caused when the user didn't have the full understanding of the digital medical image system. System artifacts had appeared the error due to DICOM header information and the compression algorithm. The obvious artifacts should be re-examined, and it could result in increasing the exposure dose of the patient. The unclear artifact leads to a wrong diagnosis and added examination. The ability to correctly determine artifact are required. We have to reduce the artifact occurrences by understanding its characteristic and providing sustainable education as well as the maintenance of the equipments.

Implementation of the Large-scale Data Signature System Using Hash Tree Replication Approach (해시 트리 기반의 대규모 데이터 서명 시스템 구현)

  • Park, Seung Kyu
    • Convergence Security Journal
    • /
    • v.18 no.1
    • /
    • pp.19-31
    • /
    • 2018
  • As the ICT technologies advance, the unprecedently large amount of digital data is created, transferred, stored, and utilized in every industry. With the data scale extension and the applying technologies advancement, the new services emerging from the use of large scale data make our living more convenient and useful. But the cybercrimes such as data forgery and/or change of data generation time are also increasing. For the data security against the cybercrimes, the technology for data integrity and the time verification are necessary. Today, public key based signature technology is the most commonly used. But a lot of costly system resources and the additional infra to manage the certificates and keys for using it make it impractical to use in the large-scale data environment. In this research, a new and far less system resources consuming signature technology for large scale data, based on the Hash Function and Merkle tree, is introduced. An improved method for processing the distributed hash trees is also suggested to mitigate the disruptions by server failures. The prototype system was implemented, and its performance was evaluated. The results show that the technology can be effectively used in a variety of areas like cloud computing, IoT, big data, fin-tech, etc., which produce a large-scale data.

  • PDF

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.1-8
    • /
    • 2023
  • If there is a defect in the wheel bearing, which is a major part of the car, it can cause problems such as traffic accidents. In order to solve this problem, big data is collected and monitoring is conducted to provide early information on the presence or absence of wheel bearing failure and type of failure through predictive diagnosis and management technology. System development is needed. In this paper, to implement such an intelligent wheel hub bearing maintenance system, we develop an embedded system equipped with sensors for monitoring reliability and soundness and algorithms for predictive diagnosis. The algorithm used acquires vibration signals from acceleration sensors installed in wheel bearings and can predict and diagnose failures through big data technology through signal processing techniques, fault frequency analysis, and health characteristic parameter definition. The implemented algorithm applies a stable signal extraction algorithm that can minimize vibration frequency components and maximize vibration components occurring in wheel bearings. In noise removal using a filter, an artificial intelligence-based soundness extraction algorithm is applied, and FFT is applied. The fault frequency was analyzed and the fault was diagnosed by extracting fault characteristic factors. The performance target of this system was over 12,800 ODR, and the target was met through test results.

Application Development for Text Mining: KoALA (텍스트 마이닝 통합 애플리케이션 개발: KoALA)

  • Byeong-Jin Jeon;Yoon-Jin Choi;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.21 no.2
    • /
    • pp.117-137
    • /
    • 2019
  • In the Big Data era, data science has become popular with the production of numerous data in various domains, and the power of data has become a competitive power. There is a growing interest in unstructured data, which accounts for more than 80% of the world's data. Along with the everyday use of social media, most of the unstructured data is in the form of text data and plays an important role in various areas such as marketing, finance, and distribution. However, text mining using social media is difficult to access and difficult to use compared to data mining using numerical data. Thus, this study aims to develop Korean Natural Language Application (KoALA) as an integrated application for easy and handy social media text mining without relying on programming language or high-level hardware or solution. KoALA is a specialized application for social media text mining. It is an integrated application that can analyze both Korean and English. KoALA handles the entire process from data collection to preprocessing, analysis and visualization. This paper describes the process of designing, implementing, and applying KoALA applications using the design science methodology. Lastly, we will discuss practical use of KoALA through a block-chain business case. Through this paper, we hope to popularize social media text mining and utilize it for practical and academic use in various domains.

FDANT-PCSV: Fast Detection of Abnormal Network Traffic Using Parallel Coordinates and Sankey Visualization (FDANT-PCSV: Parallel Coordinates 및 Sankey 시각화를 이용한 신속한 이상 트래픽 탐지)

  • Han, Ki hun;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.693-704
    • /
    • 2020
  • As a company's network structure is getting bigger and the number of security system is increasing, it is not easy to quickly detect abnormal traffic from huge amounts of security system events. In this paper, We propose traffic visualization analysis system(FDANT-PCSV) that can detect and analyze security events of information security systems such as firewalls in real time. FDANT-PCSV consists of Parallel Coordinates visualization using five factors(source IP, destination IP, destination port, packet length, processing status) and Sankey visualization using four factors(source IP, destination IP, number of events, data size) among security events. In addition, the use of big data-based SIEM enables real-time detection of network attacks and network failure traffic from the internet and intranet. FDANT-PCSV enables cyber security officers and network administrators to quickly and easily detect network abnormal traffic and respond quickly to network threats.

Access Control Method for Software on Virtual OS Using the Open Authentication Protocol (개방형 인증 프로토콜을 이용한 가상 운영체제에 설치된 SW 접근통제 방안)

  • Kim, Sun-Joo;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.568-574
    • /
    • 2013
  • In recent years, IT companies offer various cloud services using hardware-based technologies or software-based technologies. User can access these cloud services without the constraints of location or devices. The technologies are virtualization, provisioning, and big data processing. However, security incidents are constantly occurring even with these techniques. Thus, many companies build and operate private cloud service to prevent the leak of critical data. If virtual environment are different according to user permission, many system are needed, and user should login several virtual system to execute an program. In this paper, I suggest the access control method for application software on virtual operating system using the Open Authentication protocol in the Cloud system.

Exploration of emerging technologies based on patent analysis in complex product systems for catch-up: the case of gas turbine (복합제품시스템 추격을 위한 특허 기반 부상기술 탐색: 가스터빈 사례를 중심으로)

  • Kwak, Kiho;Park, Joohyoung
    • Knowledge Management Research
    • /
    • v.17 no.2
    • /
    • pp.27-50
    • /
    • 2016
  • Korean manufacturing industry have recently faced the catch-up of China in the mass commodity product, such as automotive, display, and smart phone in terms of market as well as technology. Accordingly, discussion on the importance of achieving catch-up in complex product systems (CoPS) has been increasing as a new innovation engine for the industry. In order to achieve successful catch-up of CoPS, we explored emerging technologies of CoPS, which are featured by the characteristics of radical novelty, relatively fast growth and self-sustaining, through the study of emerging technologies of gas turbine for power generation. We found that emerging technologies of the gas turbine are technologies for combustion nozzle and composition of electrical machine for increasing power efficiency, washing technology for particulate matter, cast and material processing technology for enhancing durability from fatigue, cooling technologies from extremely high temperature, interconnection operation technology between renewable energy and the gas turbine for flexibility in power generation, and big data technology for remote monitoring and diagnosis of the gas turbine. We also found that those emerging technologies resulted in technological progress of the gas turbine by converging with other conventional technologies in the gas turbine. It indicates that emerging technologies in CoPS can be appeared on various technological knowledge fields and have complementary relationship with conventional technologies for technology progress of CoPS. It also implies that latecomers need to pursue integrated learning that includes emerging technologies as well as conventional technologies rather than independent learning related to emerging technologies for successful catch-up of CoPS. Our findings provide an important initial theoretical ground for investigating the emerging technologies and their characteristics in CoPS as well as recognizing knowledge management strategy for successful catch-up of latecomers. Our findings also contribute to the policy development of the CoPS from the perspective of innovation strategy and knowledge management.

Establishing a Sustainable Future Smart Education System (지속가능한 미래형 스마트교육 시스템 구축 방안)

  • Park, Ji-Hyeon;Choi, Jae-Myeong;Park, Byoung-Lyoul;Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.495-503
    • /
    • 2012
  • As modern society rapidly changes, the field of education has also developed speedily. Since Edunet system developed in 1996, many different systems are developing continuously such as Center for Teaching and Learning, cyber home learning systems, diagnosis prescribing systems, video systems, teaching and counseling, and study management systems. However, the aforementioned systems have had not great response from the educational consumers due to a lack of interconnection. There are several reasons for it. One of the reasons is that program administrators did not carefully consider the continuity of each programs but established a brand new system whenever they need rather than predict or consider the future needs. The suitable system for smart education should be one big integrated system based on many different data analysis and processing. The system should also supply educational consumers various and useful information by adopting the idea of bigdata rather than a single sign on system connecting each independent system. The cloud computing system should be established as a system that can be managed not as simple compiled files and application programs but as various contents and DATA.

Analysis of relationship between frequency of crime occurrence and frequency of web search (범죄 발생 빈도수와 웹 검색 빈도수의 관계 분석 연구)

  • Park, Jung-Min;Park, Koo-Rack;Chung, Young-Suk
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.15-20
    • /
    • 2018
  • In modern society, crime is one of the major social problems. Crime has a great impact not only on victims but also on those around them. It is important to predict crimes before they occur and to prevent crime. Various studies have been conducted to predict crime. One of the most important factors in predicting crime is frequency of crime occurrence. The frequency of crime is widely used as basic data for predicting crime. However, the frequency of crime occurrence is announced about 2 years after the statistical processing period. In this paper, we propose a frequency analysis of crime - related key words retrieved from the web as a way to indirectly grasp the frequency of crime occurrence. The relationship between the number of frequency of crime occurrence and frequency of actual crime occurrence was analyzed by correlation coefficient.