Purpose - This empirical study, aims to identify the determinants of adoption and acceptance of mobile payment as to understand why it is successful in some countries in Sub-Saharan Africa but failing in others. A comparative study of a successful mobile payment service and a purported failed one was done as to have some insights to the factors affecting acceptance of the technology. Design/methodology/approach - The strength of three notable theories: theory of diffusion of innovation (DOI), the extended unified theory of user acceptance of information technology (UTAUT2) and self-efficacy theory were use. The self-efficacy of government support inclusion as, a moderating variable in the form of infrastructure, securing transaction and price value revealed the relevance of government in the success of mobile payment service. By means of a field survey of 705 subjects in two separate regions of Africa (East and West), the data was collected and use to test the research model. Findings - The study result shows the importance of the moderating factor of government support to the success of mobile payment of any nation. The result also shows the importance of the perception of relative advantage, compatibility, complexity, social influence as already revealed by other studies. Research implications or Originality - Mobile payment success in some part of Sub-Saharan Africa is well known but also suggested to fail in some Sub-Saharan African countries. Buttressing the need for understanding of the factors affecting mobile payment acceptance. This article empirically examined the factors influencing the success of mobile payment, and we implicated that if the implementation of mobile payment is to be successful for mobile commerce in any nation, adoption, acceptance and use by its citizen is imperative.
Purpose - The objective of the current research is to explore success factors of the 'Night Markets' in Korea. Unlike other countries, where the markets are culturally established based upon various socioeconomic factors, the night markets are relatively new phenomena in Korea and are created by the government's support. Since the first introduction in 2011, now there are 34 Night Markets that are operating or are in the process of operation. Some of them attract nearly 100,000 customers a day, while some are discontinued shortly after the introduction due to lack of visitors. Its influence on the customers' behavioral motives of engaging in various activities in the night markets is increasing. However, because of its brief history in Korea, not much of research has cast attention on them. It is imperative to figure out the success factors of the night markets, so that other night markets can learn the secret of successful operation of the markets. Research design, data, and methodology - The research is based upon both qualitative and quantitative data. Data are collected from multiples levels of the night market related parties. Four groups are chosen: customers, night market sellers, sellers' union and government officers who are in charge of the market. Conventional survey formats are employed for customers and night market sellers. For night market union and government officers, survey and in-depth focus group interview methods are applied. Of the night markets in operation, commonalities of successful or well established ones are elaborated. Results - Night Market operation success factor are sought utilizing Porter's The Competitive Advantage of Nations model (1990). Results are shown that successful night markets commonly have satisfactory 'Factor Conditions.' Specifically, established night markets have either nearby big cities or tourist attractions in common. While these have fair 'Firm Strategy/structure/rivalry,' and 'Related and supporting industries,' they commonly demonstrate weakness in 'Demand conditions.' Conclusions - A successful night market incurs new customers not only to the market itself but also to the traditional periodical market the night markets are within. Government support to the night market can be justified where the circulation of new customer to the night market and the night market to the periodical market mechanism is in effective.
The Journal of Asian Finance, Economics and Business
/
v.6
no.2
/
pp.223-230
/
2019
The study aims to contribute to the improvement of project management in Vietnam. It focuses on developing new critical success factors (CSFs) which can be used to assess the success of project management in the country. This is a promising issue considering the rapid changes occurring within the business environment. The reason is because CSFs carry great consequences on project management issues, particularly in the context of Vietnam, which is currently experiencing many big scale projects involving both local and foreign investors. Two applications are utilised. One is to adapt the business model of Belassi and Tukel (1996) to observe the transitional and emerging economy of Vietnam. The other is to examine the data collected from a survey to examine the new CSFs which can then be used to assess the success of its projects and project management in Vietnam. The research results showed some remarkable differences between CSFs of Vietnam and foreign countries in both number of success factors and its impact levels which should be paid attention by foreign project managers/owners when doing investment and project management in Vietnam. The outcome generated can be useful to project owners/managers as well as policy makers in Vietnam's business environment.
With the advent of the data economy, interest in using big data has increased, but conflicts with protecting personal information have been also steadily raised. In this regard, major countries are accelerating use of big data by exempting de-identified, pseudonymous personal information from protection. However, these policies have been made without the understanding that the economic value of personal information has been actually changing slowly. This paper presents the concept of 'collected information' and defines it as having public interest and therefore, not the exclusive property of the collector of such information. The paper shows the collected information has public interest in terms of personal information protection, connectivity, and universal service and public goods. It also specifies that the 'data governance' cannot be applied to the current data utilization framework that depends upon the holder's consent; rather, it raises the need to improve the practices of information provision consent or provide the beneficiary right of information use to the information holder in order to ensure the proper 'data governance' that will turn market failure into success.
Big data-related research that deals with the amount of explosive information in the era of the Fourth Industrial Revolution is actively underway. Big data is an essential element that promotes the development of artificial intelligence with a wide range of data that become learning data for machine learning, or deep learning. The use of deep learning and big data in various fields has produced meaningful results. In this paper, we have investigated the use of Big Data in the cultural arts industry, focusing on video contents. Noteworthy is that big data is used not only in the distribution of cultural and artistic contents but also in the production stage. In particular, we first looked at what kind of achievements and changes the Netflix in the US brought to the OTT business, and analyzed the current state of the OTT business in Korea. After that, Netflix analyzed the success stories of 'House of Cards', which was produced / circulated through 'Deep Learning' cinematique, which is a prediction algorithm, through accumulated customer data. After that, FGI (Focus Group Interview) was held for cultural and artistic contents experts. In this way, the future prospects of Big Data in the domestic culture and arts industry are divided into technical aspect, creative aspect, and ethical aspect.
International conference on construction engineering and project management
/
2022.06a
/
pp.823-830
/
2022
The risk of project execution increases due to the enlargement and complexity of Engineering, Procurement, and Construction (EPC) plant projects. In the fourth industrial revolution era, there is an increasing need to utilize a large amount of data generated during project execution. The design is a key element for the success of the EPC plant project. Although the design cost is about 5% of the total EPC project cost, it is a critical process that affects the entire subsequent process, such as construction, installation, and operation & maintenance (O&M). This study aims to develop a system using machine-learning (ML) techniques to predict risks and support decision-making based on big data generated in an EPC project's design and construction stages. As a result, three main modules were developed: (M1) the design cost estimation module, (M2) the design error check module, and (M3) the change order forecasting module. M1 estimated design cost based on project data such as contract amount, construction period, total design cost, and man-hour (M/H). M2 and M3 are applications for predicting the severity of schedule delay and cost over-run due to design errors and change orders through unstructured text data extracted from engineering documents. A validation test was performed through a case study to verify the model applied to each module. It is expected to improve the risk response capability of EPC contractors in the design and construction stage through this study.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.2
/
pp.25-40
/
2019
Many companies are executing big data analysis and utilization projects to legitimize the development of new business areas or conversion of management or technical strategies. In Korea and abroad, however, such projects are failing because they are not completed within specified deadlines, which is not unrelated to the current situation in which the knowledge base for big data project risk management from an engineering perspective is grossly lacking. As such, the current study analyzes the risk factors of big data implementation and utilization projects, in addition to finding risk factors that are highly important. To achieve this end, the study extracts project risk factors via literature review, after which they are grouped using affinity methodology and sifted through expert surveys. The deduced risk factors are structuralize using factor analysis to develop a table that categorizes various types of big data project risk factors. The current study is significant that in it provides a basis for developing basic control indicators related to risk identification, risk assessment, and risk analysis. The findings from the study contribute greatly to the success of big data projects, by providing theoretical basis regarding efficient big data project risk management.
Among the innovative companies leading the era of the 4th industrial revolution, the world's largest Internet company is Google. Google has grown by providing convenient services such as Internet search, Android smartphone operating system, and video. Now, Google is leading the global IT industry by continuing to develop in various new business fields based on open service platforms, artificial intelligence, and big data. In this study, an exploratory discussion was conducted on Google's success factors and future directions. The purpose of the research is to understand the development process of the IT field from the successfactors of Google and to analyze the development direction of the future IT industry. Google's success factors were its open platform policy and successful acquisitions of external companies. In fact, most of the services Google offers come from companies that have acquired and acquired them. In addition, there was a corporate culture that values and supportsthe spirit of challenge and autonomy of members who are not afraid of failure. Based on this study's review of Google's direction analysis, the follow-up study will infer the direction of the IT industry in depth and look at the future technologies that IT majors need to prepare.
International journal of advanced smart convergence
/
v.11
no.2
/
pp.38-43
/
2022
In this study, there are many difficulties in defining and judging creative people because there is no systematic analysis method using accurate standards or numerical values. Analyze and judge whether In the previous study, A study on the application of rule success cases through machine learning algorithm extraction, a case study was conducted to help verify or confirm the psychological personality test and aptitude test. We proposed a solution to a research problem in psychology using machine learning algorithms, Data Mining's Cross Industry Standard Process for Data Mining, and CRISP-DM, which were used in previous studies. After that, this study proposes a solution that helps to judge creative people by applying the feature selection algorithm. In this study, the accuracy was found by using seven feature selection algorithms, and by selecting the feature group classified by the feature selection algorithms, and the result of deriving the classification result with the highest feature obtained through the support vector machine algorithm was obtained.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.8
/
pp.978-984
/
2020
In this study, the correlation between sports records and weather data was analyzed using the big data analysis method. To this end, data was collected by API and crawling, data was processed, statistics were performed, and data visualization was performed. The subject of this study was a player who entered the regular at-bat among outfielders in the 2019 KBO League. In addition, meteorological data were analyzed by using the unpleasant index and above 70 and below 70. As a result of the study, in the various hitting indicators, which are the records that pitchers intervene, the higher the unpleasant index, the better the outfielder's record, but pitchers, walks, pitches, pitching success rates, pitches per turn, pitches per game From the records of the back, it was found that the outfielder made the pitcher difficult. It is expected that this study will help the development of the sports data industry and the performance of baseball players, baseball teams, and coaching staff.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.