• 제목/요약/키워드: Big Data Pattern Analysis

검색결과 172건 처리시간 0.02초

지역관광 빅데이터 정책성과와 과제 -제주특별자치도를 사례로- (Policy Achievements and Tasks for Using Big-Data in Regional Tourism -The Case of Jeju Special Self-Governing Province-)

  • 고선영;정근오
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.579-586
    • /
    • 2021
  • 본 연구는 다양한 빅데이터를 지역관광 정책에 활용한 제주특별자치도의 사례를 토대로, 관광빅데이터의 활용성과와 과제를 제시하였다. 가장 큰 활용성과는 관광빅데이터를 통해 급변하는 관광트랜드와 관광업계의 동향을 시의성있고 구체적으로 파악할 수 있게 되었고, 기존 관광통계를 정교화하는데 활용할 수 있었다는 점이다. 여기서 더 나아가 제주는 빅데이터의 활용 범위를 관광 현상 이해의 수준을 넘어 실시간 맞춤형 서비스 플랫폼 구축까지 영역을 확장하였다. 이것이 가능했던 이유는 데이터 수집 및 분석 환경 구축과 산·관·학의 협력적 거버넌스가 조성되었기 때문이다. 향후 해결해야 할 과제는 첫째, 민간 데이터셋 위주의 분석으로 예산 의존적이라는 한계와 둘째, 스마트관광의 궁극적 목표인 개인맞춤형서비스 구축을 위한 개인수준 데이터 수집 인프라, 개인정보보호법 등의 제도적인 문제의 해결이다. 마지막으로, 데이터 분석과 데이터 연계에 도달하기까지의 전문성과 기술적 한계들이 남아 있다.

도서관 빅데이터 플랫폼을 활용한 공공도서관 빅데이터 분석 연구: 대전한밭도서관을 중심으로 (Big Data Analysis for Public Libraries Utilizing Big Data Platform: A Case Study of Daejeon Hanbat Library)

  • 온정미;박성희
    • 정보관리학회지
    • /
    • 제37권3호
    • /
    • pp.25-50
    • /
    • 2020
  • 2016년 1월 1일부터 공공도서관 빅데이터 플랫폼이 서비스되기 시작하여 도서관 빅데이터가 공공도서관 업무 개선에 활용되고 있다. 본 논문은 도서관 빅데이터 플랫폼 활용사례들을 살펴보고 도서관 빅데이터 플랫폼의 활용효과를 높일 수 있는 개선방안을 도출하고자 한다. 이를 위해 먼저, 도서관 빅데이터 플랫폼을 활용한 사례들에서 활용한 빅데이터와 활용유형분석 및 도출된 서비스/시행정책을 살펴본다. 다음으로, 현재 공공도서관에서 사용하는 통합도서관리시스템(ILUS)과 도서관 빅데이터 플랫폼 각각의 자료분석 방식을 비교함으로써 도서관 빅데이터 플랫폼의 한계점과 이점을 살펴본다. 사례분석 결과, 프로그램 기획 및 수행, 장서, 수서, 기타의 유형으로 빅데이터를 활용하였고 서비스/시행정책은 이용자 맞춤형 테마서가 및 독서진흥프로그램 진행, 장서활용도 증대, 특화주제에 기반한 수서 및 대출현황 데이터 공개로 요약되었다. 비교분석결과, ILUS는 자관의 자료실현황분석에 특화되어 있으며, 빅데이터 플랫폼은 다양한 속성(연령, 성별, 지역, 대출시기 등)에 따른 선택적 분석이 가능하여 분석시간단축과 유연한 분석이 가능하다. 마지막으로 사례분석과 비교분석에서 밝혀진 특징 및 한계점을 정리하고 개선방안을 제시한다.

A Visualization Scheme with a Calendar Heat Map for Abnormal Pattern Analysis in the Manufacturing Process

  • Chankhihort, Doung;Lim, Byung-Muk;Lee, Gyu-Jung;Choi, Sungsu;Kwon, Sun-Ock;Lee, Sang-Hyun;Kang, Jeong-Tae;Nasridinov, Aziz;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • 제13권2호
    • /
    • pp.21-28
    • /
    • 2017
  • Abnormal data in the manufacturing process makes it difficult to find useful information that can be applied in data management for the manufacturing industry. It causes various problems in the daily process of production. An issue from the abnormal data can be handled by our method that uses big data and visualization. Visualization is a new technology that transforms data representation into a two-dimensional representation. Nowadays, many newly developed technologies provide data analysis, algorithm, optimization, and high efficiency, and they meet user requirements. We propose combined production of the data visualization approach that uses integrative visualization of sources of abnormal pattern analysis results. The perceived idea of the proposed approach can solve the problem as it also works for big data. It can also improve the performance and understanding by using visualization and solving issues that occur in the manufacturing process with a calendar heat map.

위치기반 빅데이터를 활용한 서울시 활동인구 유형 및 유형별 지역 특성 분석 (Types and Characteristics Analysis of Human Dynamics in Seoul Using Location-Based Big Data)

  • 정재훈;남진
    • 국토계획
    • /
    • 제54권3호
    • /
    • pp.75-90
    • /
    • 2019
  • As the 24-hour society arrives, human activities in daytime and nighttime urban spaces are changing drastically, and the need for new urban management policies is steadily increasing. This study analyzes the types and characteristics of Seoul's human dynamics using location-based big data and the results are summarized as follows. First, the pattern of human dynamics in Seoul repeats itself every 7 days. Second, the types of human dynamics in Seoul can be classified into five types, and each of type has its own unique time-series and local characteristics. Third, the degree of match between human dynamics and zoning system in urban planning legislation was highest in 'Type 1' residence pattern and low in other types. The following implications can be drawn from these results. First, This paper examined the methodology of analyzing the regional characteristics of Seoul through the human dynamics and obtained meaningful results. Second, This paper can derive reliable and objective pattern analysis results using Big data that reflect the overall population characteristics. Third, the scale of night-time activity in the urban space of Seoul was understood, and its distribution, patterns and characteristics identified.

빅데이터 분석을 활용한 사물인터넷 키워드에 관한 조망 (An Insight Study on Keyword of IoT Utilizing Big Data Analysis)

  • 남수태;김도관;진찬용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.146-147
    • /
    • 2017
  • 빅데이터 분석은 데이터베이스에 잘 정리된 정형 데이터뿐만 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 데이터를 효과적으로 분석하는 기술을 말한다. 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 이에 해당된다. 글로벌 리서치 기관들은 빅데이터 분석을 2011년 이래로 가장 주목받는 신기술로 지목해오고 있다. 따라서 대부분의 산업에서 기업들은 빅데이터의 적용을 통해 새로운 가치 창출을 위해 노력을 하고 있다. 본 연구에서는 다음 커뮤니케이션의 빅데이터 분석 도구인 소셜 매트릭스를 활용하여 분석하였다. 2017년 10월 8일 시점 1개월 기간을 설정하여 "사물인터넷" 키워드에 대한 대중들의 인식을 분석하였다. 빅데이터 분석의 결과는 다음과 같다. 첫째, 사물인터넷 키워드에 대한 1위 연관 검색어는 기술(995)인 것으로 나타났다. 결과를 바탕으로 연구의 한계와 시사점을 제시하고자 한다.

  • PDF

대형 의류벤더의 테크니컬 디자이너 실무 분석 (Analysis of Practical Tasks of Technical Designers of Big Vendors)

  • 하희정
    • Human Ecology Research
    • /
    • 제55권5호
    • /
    • pp.555-566
    • /
    • 2017
  • This study analyzes the practical tasks and required competency for technical designers to provide basic data on the training of domestic technical designers. The survey was applied to 21 technical designers of big vendors as well as investigated tasks, task flow, important tasks, time-consuming tasks, and required competencies. The results of the study are as follows. First, the technical designers were in charge of several brands of buyers and distributors of fashion companies, or several lines of the same brand. The main production items were cut and sewn knits. Second, the flow of task and tasks were in the order of buyer comments analysis, sloper decision to matching style, sewing specification, productive sewing method research, size specification suggestion, pattern correction comments, construction decision to matching style & fabric, sample evaluations, fit approval, business e-mail writing, specification & grading confirmation, and communication with buyer. Third, five tasks (analysis of buyer comments analysis, communication with buyer, pattern correction comments, productive sewing methods research, sample evaluation) were important and time-consuming tasks. Fourth, reeducation was required in order of sewing, pattern, English, fabric, and fitting. Fifth, competencies to be a technical designers were fitting, pattern correction, size specification & grading, construction & sewing specification, sewing terms & techniques, and communication skills. In conclusion, technical designer training should focus on technology-based instruction, such as sample evaluation, fitting, pattern correction, and productive sewing methods research of cut and sewn knits.

빅데이터 기반의 가속도 신호를 이용한 집단 행동패턴 및 활동성 분석 시스템 (Group Behavior Pattern and Activity Analysis System Using Big Data Based Acceleration Signals)

  • 김태웅
    • 스마트미디어저널
    • /
    • 제6권3호
    • /
    • pp.83-88
    • /
    • 2017
  • 빅데이터를 이용한 데이터 분석 시스템은 정치, 교통, 자연재해, 쇼핑, 고객관리, 의료, 기상정보 등의 다양한 분야에서 활용할 가치가 있다. 특히 웨어러블 디바이스로부터 수집한 가속도 신호를 이용한 개인의 운동량 분석은 이미 보편화되어 사용되고 있다. 하지만 이러한 시스템에서 사용하는 데이터는 개인의 운동량을 측정하기에 필요한 데이터만을 저장하고 있기 때문에, 개인의 운동량외의 다양한 분석결과들은 제공하지 못하고 있다. 본 논문에서는 개인의 스마트폰에서 수집 가능한 가속도 신호를 24시간측정하고 이를 빅데이터 기반으로 저장하여 집단 행동패턴 및 활동성 분석을 위한 시스템을 제안한다. 또한 다양한 스마트기기에서 사용할 수 있도록 표준 메시징을 이용하여 가속도신호를 송신하고 분석결과를 수신하는 시스템을 제안한다.

빅데이터 분석을 활용한 인공지능 인식에 관한 연구 (A Study on Recognition of Artificial Intelligence Utilizing Big Data Analysis)

  • 남수태;김도관;진찬용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.129-130
    • /
    • 2018
  • 빅데이터 분석은 데이터베이스에 잘 정리된 정형 데이터뿐만 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 데이터를 효과적으로 분석하는 기술을 말한다. 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 이에 해당된다. 글로벌 리서치 기관들은 빅데이터 분석을 2011년 이래로 가장 주목받는 신기술로 지목해오고 있다. 따라서 대부분의 산업에서 기업들은 빅데이터의 적용을 통해 새로운 가치 창출을 위해 노력을 하고 있다. 본 연구에서는 다음 커뮤니케이션의 빅데이터 분석 도구인 소셜 매트릭스를 활용하여 분석하였다. 2018년 5월 19일 시점 1개월 기간을 설정하여 "인공지능" 키워드에 대한 대중들의 인식을 분석하였다. 빅데이터 분석의 결과는 다음과 같다. 첫째, 인공지능에 대한 1위 연관 검색어는 중국(4,122)인 것으로 나타났다. 결과를 바탕으로 연구의 한계와 시사점을 제시하고자 한다.

  • PDF

Does Big Data Matter to Value Creation? : 오라클(Oracle) 솔루션을 중심으로 (Does Big Data Matter to Value Creation? : Based on Oracle Solution Case)

  • 김용희;유응준;강미선;최정일
    • 한국IT서비스학회지
    • /
    • 제11권3호
    • /
    • pp.39-48
    • /
    • 2012
  • It is essential that firm makes a rational and scientific decision making and creates a news value for the future direction. To do so, many firms attempt to collect meaningful data and find the filtered and refined implication for the better customer relationship and the active market drive through the various analytic tools. Among the possible IT solutions, utilization of 'Big Data' is becoming more attractive and necessary in such a way that it would help firms obtain the systemized and demanding information and facilitate their decision making process to keep up with the market needs. In this paper, it introduces the concepts and development of 'Big Data' recognized as a IT resource and solution under the rapidly changing firm environment. This study also presents the several firm cases using Big Data' and the Oracle's total data management and analytic solutions in order to support the application of 'Big Data'. Finally this paper provides a holistic viewpoint and realistic approach on use of 'Big Data' to create a new value.

빅데이터분석을 통한 도시철도 역사부하 패턴 분석 (Analysis of Electrical Loads in the Urban Railway Station by Big Data Analysis)

  • 박종영
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.460-466
    • /
    • 2018
  • For the efficient energy consumption in an urban railway station, it is necessary to know the patterns of electrical loads for each usage in detail. The electrical loads in an urban railway station have different characteristics from other normal electrical load, such as the peak load timing during a day. The lighting, HVAC, communication, and commercial loads make up large amount of electrical load for equipment in an urban railway station, and each of them has the unique specificity. These loads for each usage were estimated without measuring device by the polynomial regression method with big data such as total amount of electrical load and weather data. In the simulation with real data, the optimal polynomial regression model was third order polynomial regression model with 9 or 10 independent variables.