Big data information and pattern analysis have applications in many industrial sectors. To reduce energy consumption effectively, the eco-driving method that reduces the fuel consumption of vehicles has recently come under scrutiny. Using big data on commercial vehicles obtained from digital tachographs (DTGs), it is possible not only to aid traffic safety but also improve eco-driving. In this study, we estimate fuel consumption efficiency by processing and analyzing DTG big data for commercial vehicles using parallel processing with the MapReduce mechanism. Compared to the conventional measurement of fuel consumption using the On-Board Diagnostics II (OBD-II) device, in this paper, we use actual DTG data and OBD-II fuel consumption data to identify meaningful relationships to calculate fuel efficiency rates. Based on the driving pattern extracted from DTG data, estimating fuel consumption is possible by analyzing driving patterns obtained only from DTG big data.
The Journal of the Korea institute of electronic communication sciences
/
v.9
no.10
/
pp.1071-1078
/
2014
Recently, information providing service using Big Data is being expanded. Big Data processing technology is actively being academic research to an important issue in the IT industry. In this paper, we analyze a skilled pattern of welder through Big Data analysis or extraction of welding based on R programming. We are going to reduce cost on welding work including weld quality, weld operation time by providing analyzed results non-skilled welder. Welding has a problem that should be invested long time to be a skilled welder. For solving these issues, we apply connection rules algorithms and regression method to much pattern variable for welding pattern analysis of skilled welder. We analyze a pattern of skilled welder according to variable of analyzed rules by analyzing top N rules. In this paper, we confirmed the pattern structure of power consumption rate and wire consumption length through experimental results of analyzed welding pattern analysis.
This study analyzes consumer fashion purchase patterns from a big data perspective. Transaction data from 1 million transactions at two Korean fashion brands were collected. To analyze the data, R, Python, the SPADE algorithm, and network analysis were used. Various consumer purchase patterns, including overall purchase patterns, seasonal purchase patterns, and age-specific purchase patterns, were analyzed. Overall pattern analysis found that a continuous purchase pattern was formed around the brands' popular items such as t-shirts and blouses. Network analysis also showed that t-shirts and blouses were highly centralized items. This suggests that there are items that make consumers loyal to a brand rather than the cachet of the brand name itself. These results help us better understand the process of brand equity construction. Additionally, buying patterns varied by season, and more items were purchased in a single shopping trip during the spring season compared to other seasons. Consumer age also affected purchase patterns; findings showed an increase in purchasing the same item repeatedly as age increased. This likely reflects the difference in purchasing power according to age, and it suggests that the decision-making process for pur- chasing products simplifies as age increases. These findings offer insight for fashion companies' establishment of item-specific marketing strategies.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.5
/
pp.1073-1079
/
2014
One of the techniques that are most in the spotlight today, it can be said that Big data. With Big Data, technologies already prevalent in our lives is GPS. Based on the GPS data and Big Data, in this paper, we try to analyze the pattern and path of movement of a particular target. Specific target collects the GPS data by classifying weather and grade and sex of college students, and day of the week in college students of one university. The collected data is analyzed such as movement path, movement time, pattern of repetitive behavior. And visualize it. The analysis method will be classified according to the purpose of data. By identifying relationships with other data results obtained. Based on the present study, the future, we will derive the results of the data more reliable. For this purpose, a wide range of information to be collected will additionally. Research will be developed add to such as Season, time, blood type, occupation data.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.10a
/
pp.182-183
/
2018
Big data analysis is the process of discovering a meaningful correlation, pattern, and trends in large data set stored in existing data warehouse management tools and creating new values. In addition, by extracts new value from structured and unstructured data set in big volume means a technology to analyze the results. Most of the methods of Big data analysis technology are data mining, machine learning, natural language processing, pattern recognition, etc. used in existing statistical computer science. Global research institutes have identified Big data as the most notable new technology since 2011.
Purpose The purpose of this study is to explore the pattern of user response and it's duration time through social media content response analysis. We also analyze the characteristics of content quality factors which are associate with the user response pattern. The analysis results will provide some implications to develop strategies and schematic plans for the operator of regional marketing on the SNS. Design/methodology/approach This study used mixed methods to verify the effects and responses of social media contents on the users who have concerns about regional events such as local festival, cultural events, and city tours etc. Big data analysis was conducted with the quantitative data from regional government SNSs. The data was collected through web crawling in order to analyze the social media contents. We especially analyzed the contents duration time and peak level time. This study also analyzed the characteristics of contents quality factors using expert evaluation data on the social media contents. Finally, we verify the relationship between the contents quality factors and user response types by cross correlation analysis. Findings According to the big data analysis, we could find some content life cycle which can be explained through empirical distribution with peak time pattern and left skewed long tail. The user response patterns are dependent on time and contents quality. In addition, this study confirms that the level of quality of social media content is closely relate to user interaction and response pattern. As a result of the contents response pattern analysis, it is necessary to develop high quality contents design strategy and content posting and propagation tactics. The SNS operators need to develop high quality contents using rich-media technology and active response contents that induce opinion leader on the SNS.
There have been many efforts to understand the trends of IT environments that have been rapidly changed. In a view point of management, it needs to prepare the social systems in advance by using Big-data these days. This research is for the implementation of Issue Analysis System for the Big-data based on Artificial Intelligence. This paper aims to confirm the possibility of new technology for Big-data processing through the proposed Issue Analysis System using. We propose a technique for semantic reasoning and pattern analysis based on the AI and show the proposed method is feasible to handle the Big-data. We want to verify that the proposed method can be useful in dealing with Big-data by applying latest security issues into the system. The experiments show the potentials for the proposed method to use it as a base technology for dealing with Big-data for various purposes.
International Journal of Internet, Broadcasting and Communication
/
v.12
no.4
/
pp.218-225
/
2020
The purpose of this paper is to establish an IoT-based big data platform that can check the space and form analysis in various play cultures of children. Therefore, to this end, in order to understand the healthy play culture of children, we are going to build a big data platform that allows IoT and smart devices to work together to collect data. Therefore, the goal of this study is to develop a big data platform linked to IoT first in order to collect data related to observation of children's mobile movements. Using the developed big data platform, children's play culture can be checked anywhere through observation and intuitive UI design, quick information can be automatically collected and real-time feedback, data collected through repeaters can be aggregated and analyzed, and systematic database can be utilized in the form of big data.
Cha, Gyeong Hyeon;Kim, Kyung Ho;Hwang, Yu Min;Lee, Dong Chang;Kim, Sang Ji;Kim, Jin Young
Journal of Satellite, Information and Communications
/
v.9
no.4
/
pp.57-62
/
2014
In this paper, we proposed and implemented a crime pattern analysis algorithm using big data. The proposed algorithm uses crime-related big data collected and published in the supreme prosecutors' office. The algorithm analyzed crime patterns in Seoul city from 2011 to 2013 using the spatial statistics analysis like the standard deviational ellipse and spatial density analysis. Using crime frequency, We calculated the crime probability and danger factors of crime areas, time, date, and places. Through a result we analyzed spatial statistics. As the result of the proposed algorithm, we could grasp differences in crime patterns of Seoul city, and we calculated degree of risk through analysis of crime pattern and danger factor.
Kim, Woosaeng;Kim, Yong Hoon;Park, Hee-Sung;Park, Jin-Kyu
Journal of Information Technology Applications and Management
/
v.24
no.4
/
pp.187-196
/
2017
It is urgent to prepare countermeasures for traffic congestion problems of Korea's metropolitan area where central functions such as economic, social, cultural, and education are excessively concentrated. Most users of public transportation in metropolitan areas including Seoul use the traffic cards. If various information is extracted from traffic big data produced by the traffic cards, they can provide basic data for transport policies, land usages, or facility plans. Therefore, in this study, we extract valuable information such as the subway passengers' frequent travel patterns from the big traffic data provided by the Seoul Metropolitan Government Big Data Campus. For this, we use a Hadoop (High-Availability Distributed Object-Oriented Platform) to preprocess the big data and store it into a Mongo database in order to analyze it by a sequential pattern data mining technique. Since we analysis the actual big data, that is, the traffic cards' data provided by the Seoul Metropolitan Government Big Data Campus, the analyzed results can be used as an important referenced data when the Seoul government makes a plan about the metropolitan traffic policies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.