• 제목/요약/키워드: Big Data Pattern Analysis

검색결과 172건 처리시간 0.031초

DTG Big Data Analysis for Fuel Consumption Estimation

  • Cho, Wonhee;Choi, Eunmi
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.285-304
    • /
    • 2017
  • Big data information and pattern analysis have applications in many industrial sectors. To reduce energy consumption effectively, the eco-driving method that reduces the fuel consumption of vehicles has recently come under scrutiny. Using big data on commercial vehicles obtained from digital tachographs (DTGs), it is possible not only to aid traffic safety but also improve eco-driving. In this study, we estimate fuel consumption efficiency by processing and analyzing DTG big data for commercial vehicles using parallel processing with the MapReduce mechanism. Compared to the conventional measurement of fuel consumption using the On-Board Diagnostics II (OBD-II) device, in this paper, we use actual DTG data and OBD-II fuel consumption data to identify meaningful relationships to calculate fuel efficiency rates. Based on the driving pattern extracted from DTG data, estimating fuel consumption is possible by analyzing driving patterns obtained only from DTG big data.

용접 빅데이터 환경에서 상관분석 및 회귀분석을 이용한 작업 패턴 분석 모형에 관한 연구 (A Study on a Working Pattern Analysis Prototype using Correlation Analysis and Linear Regression Analysis in Welding BigData Environment)

  • 정세훈;심춘보
    • 한국전자통신학회논문지
    • /
    • 제9권10호
    • /
    • pp.1071-1078
    • /
    • 2014
  • 최근 빅데이터(Big Data)를 이용한 정보 제공 서비스가 확대되고 빅데이터 처리 기술 역시 IT 업체의 중요한 이슈로 학문적인 연구가 활발히 진행되고 있는 실정이다. 이에 본 논문에서는 R 프로그래밍을 기반으로 용접의 빅데이터 분석 및 추출을 통하여 용접사의 숙련된 패턴을 분석하고 분석된 결과를 비 숙련공에게 제공함으로써 용접 품질 및 용접 시간 단축 등의 용접 작업에 적용되는 비용을 절감하고자 한다. 용접은 숙련공이 되기 위하여 오랜 시간을 투자해야 하는 문제점이 있다. 이러한 단점을 해결하고자 숙련공들의 용접 패턴 분석을 위하여 다량의 패턴 변수에 R의 연관 규칙 알고리즘과 회귀분석 방식을 적용한다. 상위 N개의 규칙을 분석한 후 분석된 규칙의 변수에 따른 숙련자의 패턴을 분석한다. 본 논문에서는 분석된 용접 패턴 분석을 통해 실험 결과를 분석하여 전력소비량과 와이어 소모 길이에 대한 패턴 구조를 확인하였다.

The fashion consumer purchase patterns and influencing factors through big data - Based on sequential pattern analysis -

  • Ki Yong Kwon
    • 복식문화연구
    • /
    • 제31권5호
    • /
    • pp.607-626
    • /
    • 2023
  • This study analyzes consumer fashion purchase patterns from a big data perspective. Transaction data from 1 million transactions at two Korean fashion brands were collected. To analyze the data, R, Python, the SPADE algorithm, and network analysis were used. Various consumer purchase patterns, including overall purchase patterns, seasonal purchase patterns, and age-specific purchase patterns, were analyzed. Overall pattern analysis found that a continuous purchase pattern was formed around the brands' popular items such as t-shirts and blouses. Network analysis also showed that t-shirts and blouses were highly centralized items. This suggests that there are items that make consumers loyal to a brand rather than the cachet of the brand name itself. These results help us better understand the process of brand equity construction. Additionally, buying patterns varied by season, and more items were purchased in a single shopping trip during the spring season compared to other seasons. Consumer age also affected purchase patterns; findings showed an increase in purchasing the same item repeatedly as age increased. This likely reflects the difference in purchasing power according to age, and it suggests that the decision-making process for pur- chasing products simplifies as age increases. These findings offer insight for fashion companies' establishment of item-specific marketing strategies.

BigData 분석 기법을 활용한 이동 패턴 분석 연구 (Analysis study of movement patterns using BigData analysis technology)

  • 윤준수;강희수;문일영
    • 한국정보통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.1073-1079
    • /
    • 2014
  • 현재 가장 각광 받고 있는 기술 중 하나는 빅 데이터라 할 수 있다. 또한 빅 데이터와 더불어 이미 우리 생활에 널리 퍼져있는 기술은 GPS이다. 이러한 빅 데이터 기술과 GPS 데이터를 기반으로 본 논문에서는 특정 대상의 이동경로와 패턴을 분석하고자 한다. 특정 대상은 한 대학교의 대학생을 중점으로 하고 대학생들의 성별과 학년 및 날씨, 요일 등으로 분류하여 GPS 데이터를 수집한다. 수집한 빅 데이터는 이동경로, 이동시간, 반복적인 행동 패턴 등으로 분석을 실시하고 이를 시각화 한다. 분석방식은 수집된 데이터를 각 목적에 맞게 분류해 내고 타 데이터와의 연계성을 파악하여 원하는 결과 값을 얻는 방식으로 연구를 진행하였다. 본 연구를 바탕으로 향후 보다 신뢰성 있는 데이터 결과를 도출할 것이며 이를 위해 추가적으로 폭 넓은 정보를 수집할 것이다. 계절, 시간, 혈액형, 직업 등의 데이터를 추가하여 발전 된 방향으로 연구할 것이다.

식용곤충 연구 메타 분석 (A Meta Analysis of the Edible Insects)

  • 유옥경;진찬용;남수태;이현창
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.182-183
    • /
    • 2018
  • 빅데이터 분석은 데이터베이스에 잘 정리된 정형 데이터뿐만 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 데이터를 효과적으로 분석하는 기술을 말한다. 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 이에 해당된다. 본 연구에서는 빅데이터 분석도구인 소셜 메트릭스를 활용 식용곤충에 대한 메타분석을 진행하였다.

  • PDF

지역마케팅 콘텐츠의 사용자 반응패턴과 품질특성에 관한 탐색적 분석: 지방자치단체가 운영하는 SNS를 중심으로 (An Exploratory Analysis on the User Response Pattern and Quality Characteristics of Marketing Contents in the SNS of Regional Government)

  • 정연수;정대율
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제26권4호
    • /
    • pp.419-442
    • /
    • 2017
  • Purpose The purpose of this study is to explore the pattern of user response and it's duration time through social media content response analysis. We also analyze the characteristics of content quality factors which are associate with the user response pattern. The analysis results will provide some implications to develop strategies and schematic plans for the operator of regional marketing on the SNS. Design/methodology/approach This study used mixed methods to verify the effects and responses of social media contents on the users who have concerns about regional events such as local festival, cultural events, and city tours etc. Big data analysis was conducted with the quantitative data from regional government SNSs. The data was collected through web crawling in order to analyze the social media contents. We especially analyzed the contents duration time and peak level time. This study also analyzed the characteristics of contents quality factors using expert evaluation data on the social media contents. Finally, we verify the relationship between the contents quality factors and user response types by cross correlation analysis. Findings According to the big data analysis, we could find some content life cycle which can be explained through empirical distribution with peak time pattern and left skewed long tail. The user response patterns are dependent on time and contents quality. In addition, this study confirms that the level of quality of social media content is closely relate to user interaction and response pattern. As a result of the contents response pattern analysis, it is necessary to develop high quality contents design strategy and content posting and propagation tactics. The SNS operators need to develop high quality contents using rich-media technology and active response contents that induce opinion leader on the SNS.

빅데이터를 이용한 자동 이슈 분석 시스템 (An Automatic Issues Analysis System using Big-data)

  • 최동열;안은영
    • 한국콘텐츠학회논문지
    • /
    • 제20권2호
    • /
    • pp.240-247
    • /
    • 2020
  • 빠르게 변화하는 온라인상의 정보 흐름과 트랜드를 이해하고 IT기술 환경변화에 대응하기 위해서 필요한 선제적 제도 마련을 위한 한 가지 방안으로 빅데이터를 이용하고자 하는 노력이 최근 들어 더욱 가속화 되고 있다. 논문에서는 인공지능 기반의 빅데이터 처리를 통한 이슈 분석 시스템의 개발과 연구를 통해 빅데이터 처리를 위한 새로운 기술의 가능성을 확인하고자 한다. 이를 위해, 고속의 병렬처리가 가능해진 인공신경망을 사용, 의미 추론 및 패턴분석을 위한 처리 기법을 제안하고 구현을 통해 제안하는 방법에 대한 빅데이터 처리의 적합성을 알아본다. 정보보안의 중요성을 감안하여, 인공 신경망을 이용한 이슈 분석 시스템을 최근의 보안 이슈 분석에 활용해봄으로써 제안하는 방식이 실제 빅데이터 처리에 유용하게 활용 될 수 있음을 검증한다. 실험을 통해서 제안된 방식에 대한 다양한 목적의 빅데이터 처리를 위한 기반 기술로의 활용 가능성을 확인한다.

Design and Development of Big Data Platform based on IoT-based Children's Play Pattern Analysis

  • Jung, Seon-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권4호
    • /
    • pp.218-225
    • /
    • 2020
  • The purpose of this paper is to establish an IoT-based big data platform that can check the space and form analysis in various play cultures of children. Therefore, to this end, in order to understand the healthy play culture of children, we are going to build a big data platform that allows IoT and smart devices to work together to collect data. Therefore, the goal of this study is to develop a big data platform linked to IoT first in order to collect data related to observation of children's mobile movements. Using the developed big data platform, children's play culture can be checked anywhere through observation and intuitive UI design, quick information can be automatically collected and real-time feedback, data collected through repeaters can be aggregated and analyzed, and systematic database can be utilized in the form of big data.

빅 데이터를 이용한 범죄패턴 분석 알고리즘의 구현 (Implementation of Crime Pattern Analysis Algorithm using Big Data)

  • 차경현;김경호;황유민;이동창;김상지;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.57-62
    • /
    • 2014
  • 본 논문에서는 빅 데이터를 이용하여 범죄 발생 패턴을 분석하는 알고리즘을 제안하고 구현했다. 제안된 알고리즘은 대검찰청에서 수집하여 공개한 범죄관련 빅 데이터를 사용하며, 표준편차 타원체 및 공간밀도 분석과 같은 공간통계분석을 통해 서울시의 2011-2013년 범죄발생 패턴을 분석했다. 범죄 발생 빈도수를 이용하여 범죄발생지역, 시간, 요일, 장소의 위험지수를 구했고, 범죄 패턴 분석 알고리즘을 통해 범죄 발생 확률을 구했다. 이를 통해 공간통계분석을 했다. 제안된 알고리즘의 구현 결과, 서울시의 각 구별로 범죄발생 패턴이 다르다는 것을 파악할 수 있었고, 다양한 범죄발생 패턴을 분석하고 범죄발생확률을 위험지수를 통해 수치화하여 위험도를 정량적으로 산출할 수 있었다.

하둡과 순차패턴 마이닝 기술을 통한 교통카드 빅데이터 분석 (Analysis of Traffic Card Big Data by Hadoop and Sequential Mining Technique)

  • 김우생;김용훈;박희성;박진규
    • Journal of Information Technology Applications and Management
    • /
    • 제24권4호
    • /
    • pp.187-196
    • /
    • 2017
  • It is urgent to prepare countermeasures for traffic congestion problems of Korea's metropolitan area where central functions such as economic, social, cultural, and education are excessively concentrated. Most users of public transportation in metropolitan areas including Seoul use the traffic cards. If various information is extracted from traffic big data produced by the traffic cards, they can provide basic data for transport policies, land usages, or facility plans. Therefore, in this study, we extract valuable information such as the subway passengers' frequent travel patterns from the big traffic data provided by the Seoul Metropolitan Government Big Data Campus. For this, we use a Hadoop (High-Availability Distributed Object-Oriented Platform) to preprocess the big data and store it into a Mongo database in order to analyze it by a sequential pattern data mining technique. Since we analysis the actual big data, that is, the traffic cards' data provided by the Seoul Metropolitan Government Big Data Campus, the analyzed results can be used as an important referenced data when the Seoul government makes a plan about the metropolitan traffic policies.