기업들은 다가오는 데이터 경쟁시대를 이해하고 이에 대비해야 한다며 가트너는 기업의 생존 패러다임에 많은 변화를 요구하고 있다. 또한 통계 알고리즘 기반의 예측분석을 통한 비즈니스 성공 사례들이 발표되면서, 과거 데이터 분석에 따른 사후 조치에서 예측 분석에 의한 선제적 대응으로의 전환은 앞서가고 있는 기업의 필수품이 되어 가고 있다. 이러한 경향은 보안 분석 및 로그 분석 분야에도 영향을 미치고 있으며, 실제로 빅데이터화되고 있는 대용량 로그에 대한 분석과 지능화, 장기화되고 있는 보안 분석에 빅데이터 분석 프레임워크를 활용하는 사례들이 속속 발표되고 있다. 그러나 빅데이터 로그 분석 시스템에 요구되는 모든 기능 및 기술들을 하둡 기반의 빅데이터 플랫폼에서 수용할 수 없는 문제점들이 있어서 독자적인 플랫폼 기반의 빅데이터 로그 분석 제품들이 여전히 시장에 공급되고 있다. 본 논문에서는 이러한 독자적인 빅데이터 로그 분석 시스템을 위한 실시간 및 비실시간 예측 분석 엔진을 탑재하여 사이버 공격에 선제적으로 대응할 수 있는 프레임워크를 제안하고자 한다.
최근 4차 산업혁명 도래의 기반을 제공한 빅데이터와 인공지능 기술은 산업 전반의 혁신을 견인하는 주요 동력이 되고 있다. 정보보안 영역에서도 그동안 효과적인 활용방안을 찾기 어려웠던 대규모 로그 데이터에 이러한 기술들을 적용하여 지능형 보안 체계를 개발 및 발전시키고자 노력하고 있다. 보안 인공지능 학습의 기반이 되는 보안로그 빅데이터의 품질은 곧 지능형 보안 체계의 성능을 결정짓는 중요한 입력 요소라고 할 수 있다. 하지만 다양한 제품 공급자에 따른 로그 데이터의 상이성과 복잡성은 빅데이터 전처리 과정에서 과도한 시간과 노력을 요하고 품질저하를 초래하는 문제가 있다. 본 연구에서는 다양한 방화벽 로그 데이터 포맷 관련 사례와 국내외 표준 조사를 바탕으로 데이터 수집 포맷 표준안을 제시하여 보안 로그 빅데이터를 기반으로 하는 지능형 보안 체계 발전에 기여하고자 한다.
인터넷과 스마트기기의 발달로 인해 소셜미디어 등 다양한 미디어의 접근의 용이해짐에 따라 많은 양의 빅데이터들이 생성되고 있다. 특히 다양한 인터넷 서비스를 제공하는 기업들은 고객 성향 및 패턴, 보안성 강화를 위해 맵리듀스 기반 빅데이터 분석 기법들을 활용하여 빅데이터 분석하고 있다. 그러나 맵리듀스는 리듀스 단계에서 생성되는 리듀서 객체의 수를 한 개로 정의하고 있어, 빅데이터 분석할 때 처리될 많은 데이터들이 하나의 리듀서 객체에 집중된다. 이로 인해 리듀서 객체는 병목현상이 발생으로 빅데이터 분석 처리율이 감소한다. 이에 본 논문에서는 로그 분석처리율 향상을 위한 맵리듀스 기반 분할 빅데이터 분석 기법을 제안한다. 제안한 기법은 리듀서 분할 단계와 분석 결과병합 단계로 구분하며 리듀서 객체의 수를 유동적으로 생성하여 병목현상을 감소시켜 빅데이터 처리율을 향상시킨다.
보안 장비에서 발생하는 로그는 그동안 ESM(Enterprise Security Management) 기반으로 통합적으로 데이터를 분석하였으나 데이터 저장 용량의 한계와 ESM자체의 데이터 처리 성능의 한계로 빅데이터 처리에 부적합하기 때문에 빅데이터 플랫폼을 이용한 보안로그 분석 기술이 필요하다. 빅데이터 플랫폼은 Hadoop Echosystem을 이용하여 대용량의 데이터 수집, 저장, 처리, 검색, 분석, 시각화 기능을 구현할 수 있다. 현재 ESM기술은 SIEM(Security Information & Event Management)방식으로 기술이 발전하고 있으며 SIEM방식의 보안기술을 구현하기 위해서는 현재 보안장비에서 발생하는 방대한 로그 데이터를 처리할 수 있는 빅데이터 플랫폼 기술이 필수적이다. 본 논문은 Hadoop Echosystem 이 가지고 있는 빅데이터 플랫폼 기술을 활용하여 보안로그를 분석하기 위한 시스템을 어떻게 구현할 수 있는지에 대한 모델을 연구하였다.
IT발전과 함께 해킹 범죄는 지능화, 정교화 되고 있다. 침해대응에 있어 빅데이터 분석이란 정보보호 시스템에서 발생하는 정상로그 등 전체 로그를 수집, 저장, 분석 및 시각화하여 이상행위와 같은 특이점을 도출하는 것이다. 기존에 간과해왔던 데이터를 포함하는 전수 로그를 활용하여 사이버 침해의 초기단계에서부터 침해에 대한 이상 징후를 탐지 및 대응하고자 한다. 정보보호 시스템과 단말 및 서버 등에서 발생하는 비정형에 가까운 빅데이터를 분석하기 위해서 오픈소스 기술을 사용하였다. ELK Stack 오픈소스를 사용한다는 점은 해당 기관의 자체 인력으로 기업 환경에 최적화된 정보보호 관제 체계를 구축하는 것이다. 고가의 상용 데이터 통합 분석 솔루션에 의존할 필요가 없으며, 자체 인력으로 직접 정보보호 관제 체계를 구현함으로써 침해대응의 기술 노하우 축적이 가능하다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권8호
/
pp.3182-3202
/
2015
Flexibly expanding the storage capacity required to process a large amount of rapidly increasing unstructured log data is difficult in a conventional computing environment. In addition, implementing a log processing system providing features that categorize and analyze unstructured log data is extremely difficult. To overcome such limitations, we propose and design a MongoDB-based unstructured log processing system (MdbULPS) for collecting, categorizing, and analyzing log data generated from banks. The proposed system includes a Hadoop-based analysis module for reliable parallel-distributed processing of massive log data. Furthermore, because the Hadoop distributed file system (HDFS) stores data by generating replicas of collected log data in block units, the proposed system offers automatic system recovery against system failures and data loss. Finally, by establishing a distributed database using the NoSQL-based MongoDB, the proposed system provides methods of effectively processing unstructured log data. To evaluate the proposed system, we conducted three different performance tests on a local test bed including twelve nodes: comparing our system with a MySQL-based approach, comparing it with an Hbase-based approach, and changing the chunk size option. From the experiments, we found that our system showed better performance in processing unstructured log data.
Nowadays, since there are so many big data available everywhere, those big data can be used to find useful information to improve design and operation by using various analysis methods such as data mining. Especially if we have event log data that has execution history data of an organization such as case_id, event_time, event (activity), performer, etc., then we can apply process mining to discover the main process model in the organization. Once we can find the main process from process mining, we can utilize it to improve current working environment. In this paper we developed a new method to find a final diagnosis of a patient, who needs several procedures (medical test and examination) to diagnose disease of the patient by using process mining approach. Some patients can be diagnosed by only one procedure, but there are certainly some patients who are very difficult to diagnose and need to take several procedures to find exact disease name. We used 2 million procedure log data and there are 397 thousands patients who took 2 and more procedures to find a final disease. These multi-procedure patients are not frequent case, but it is very critical to prevent wrong diagnosis. From those multi-procedure taken patients, 4 procedures were discovered to be a main process model in the hospital. Using this main process model, we can understand the sequence of procedures in the hospital and furthermore the relationship between diagnosis and corresponding procedures.
International journal of advanced smart convergence
/
제8권3호
/
pp.193-200
/
2019
Accruals-Quality(AQ) is an important proxy for evaluating the quality of accounting information disclosures. High-quality accounting information will provide high predictability and precision in the disclosure of earnings and will increase the response to stock prices. And high Accruals-Quality, such as mitigating heterogeneity in accounting information interpretation, provides information usefulness in capital markets. The purpose of this study is to suggest how AQ, which represents the quality of accounting information disclosure, is transformed into digitized data in real-time in combination with IT information technology and provided to financial analyst's information environment in real-time. And AQ is a framework for predictive analysis through big data log analysis system. This real-time information from AQ will help financial analysts to increase their activity and reduce information asymmetry. In addition, AQ, which is provided in real time through IT information technology, can be used as an important basis for decision-making by users of capital market information, and is expected to contribute in providing companies with incentives to voluntarily improve the quality of accounting information disclosure.
최근 대용량 데이터 분석을 위해 다수의 서버를 사용하는 시스템이 증가하고 있다. 대표적인 빅데이터 기술인 하둡은 대용량 데이터를 다수의 서버로 구성된 분산 환경에 저장하여 처리한다. 이러한 분산 시스템에서는 각 서버의 시스템 자원 관리가 매우 중요하다. 본 논문은 다수의 서버에서 수집된 로그 데이터를 토대로 간단하면서 효율적인 이상 탐지 기법을 사용하여 로그 데이터의 변화가 급증하는 이상치를 탐지하고자 한다. 이를 위해, 각 서버로부터 로그 데이터를 수집하여 하둡 에코시스템에 저장할 수 있도록 Apache Hive의 저장 구조를 설계하고, 이동 평균 및 3-시그마를 사용한 세 가지 이상 탐지 기법을 설계한다. 마지막으로 실험을 통해 세 가지 기법이 모두 올바로 이상 구간을 탐지하며, 또한 가중치가 적용된 이상 탐지 기법이 중복을 제거한 더 정확한 탐지 기법임을 확인한다. 본 논문은 하둡 에코시스템을 사용하여 간단한 방법으로 로그 데이터의 이상을 탐지하는 우수한 결과라 사료된다.
본 논문에서는 장애인의 보행을 지원하는 Smart-Walk 시스템에서 하나의 시스템으로 여러 유형의 장애인을 지원할 수 있도록 하는 유니버설 디자인개념의 데이터베이스 구축방안을 제시한다. 또한, 운행로그를 분석하여 사용자의 사용현황과 이탈비율을 계산함으로써 시스템의 최적운영을 지원하는 방안을 제시한다. 다양한 사용자 유형과 그에 적합한 사용방법들을 데이터베이스에 저장하고 관리함으로써 간단하게 다양한 유형의 사용자들에게 지원할 수 있는 방법은 진정한 유니버설디자인 이념의 실현이라 할 수 있다. 사용자의 운행로그를 데이터웨어하우스 형태로 저장하고 온라인 분석 기법을 적용함으로써 시스템의 최적 운영에 유용한 정보를 실시간으로 추출해 낼 수 있게 된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.