• Title/Summary/Keyword: Big Data Analytics Capabilities

Search Result 10, Processing Time 0.024 seconds

Impact of Big Data Analytics on Indian E-Tailing from SCM to TCS

  • Avinash BM;Divakar GM;Rajasekhara Mouly Potluri;Megha B
    • Journal of Distribution Science
    • /
    • v.22 no.8
    • /
    • pp.65-76
    • /
    • 2024
  • Purpose: The study aims to recognize the relationship between big data analytics capabilities, big data analytics process, and perceived business performance from supply chain management to total customer satisfaction. Research design, data and methodology: The study followed a quantitative approach with a descriptive design. The data was collected from leading e-commerce companies in India using a structured questionnaire, and the data was coded and decoded using MS Excel, SPSS, and R language. It was further tested using Cronbach's alpha, KMO, and Bartlett's test for reliability and internal consistency. Results: The results showed that the big data analytics process acts as a robust mediator between big data analytics capabilities and perceived business performance. The 'direct, indirect and total effect of the model' and 'PLS-SEM model' showed that the big data analytics process directly impacts business performance. Conclusions: A complete indirect relationship exists between big data analytics capabilities and perceived business performance through the big data analytics process. The research contributesto e-commerce companies' understanding of the importance of big data analytics capabilities and processes.

Research of Knowledge Management and Reusability in Streaming Big Data with Privacy Policy through Actionable Analytics (스트리밍 빅데이터의 프라이버시 보호 동반 실용적 분석을 통한 지식 활용과 재사용 연구)

  • Paik, Juryon;Lee, Youngsook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.3
    • /
    • pp.1-9
    • /
    • 2016
  • The current meaning of "Big Data" refers to all the techniques for value eduction and actionable analytics as well management tools. Particularly, with the advances of wireless sensor networks, they yield diverse patterns of digital records. The records are mostly semi-structured and unstructured data which are usually beyond of capabilities of the management tools. Such data are rapidly growing due to their complex data structures. The complex type effectively supports data exchangeability and heterogeneity and that is the main reason their volumes are getting bigger in the sensor networks. However, there are many errors and problems in applications because the managing solutions for the complex data model are rarely presented in current big data environments. To solve such problems and show our differentiation, we aim to provide the solution of actionable analytics and semantic reusability in the sensor web based streaming big data with new data structure, and to empower the competitiveness.

The Impact of Big Data Analytics Capabilities and Values on Business Performance (빅데이터 분석능력과 가치가 비즈니스 성과에 미치는 영향)

  • Noh, Mi Jin;Lee, Choong Kwon
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.108-115
    • /
    • 2021
  • This study investigated the relationships between the analytics capability and value of big data and business performance for big data analysts of business organizations. The values that big data can bring were categorized into transactional value, strategic value, transformational value, and informational value, and we attempted to verify whether these values lead to business performance. Two hundred samples from employees with experience in big data analysis were collected and analyzed. The hypotheses were tested with a structural equation model, and the capability of big data analytics was found to have a significant effect on the value and business performance of big data. Among the big data values, transactional value, strategic value, and transformational value had a positive effect on business performance, but the impact of informational value has not been proven. The results of this study are expected to provide useful information to business organizations seeking to achieve business performance using big data.

The Impact of Exploration and Exploitation Activities and Market Agility on the Relationship between Big Data Analytics Capability and Firms' Performance (빅 데이터 분석능력과 기업 성과 간의 관계에서 혁신 및 개선 활동과 시장 민첩성의 영향)

  • Jung, He-Kyung;Boo, Jeman
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.150-162
    • /
    • 2022
  • This study investigated the impact of the latest developments in big data analytics capabilities (BDAC) on firm performance. The BDAC have the power to innovate existing management practices. Nevertheless, their impact on firm performance has not been fully is not yet fully elucidated. The BDAC relates to the flexibility of infrastructure as well as the skills of management and firm's personnel. Most studies have explored the phenomena from a theoretical perspective or based on factors such as organizational characteristics. However, this study extends the flow of previous research by proposing and testing a model which examines whether organizational exploration, exploitation and market agility mediate the relationship between the BDAC and firm performance. The proposed model was tested using survey data collected from the long-term employees over 10 years in 250 companies. The results analyzed through structural equation modeling show that a strong BDAC can help improve firm performance. An organization's ability to analyze big data affects its exploration and exploitation thereby affecting market agility, and, consequently, firm performance. These results also confirm the powerful mediating role of exploration, exploitation, and market agility in improving insights into big data utilization and improving firm performance.

Does Big Data Analytics Enhance Sustainability and Financial Performance? The Case of ASEAN Banks

  • ALI, Qaisar;SALMAN, Asma;YAACOB, Hakimah;ZAINI, Zaki;ABDULLAH, Rose
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.7
    • /
    • pp.1-13
    • /
    • 2020
  • This study analyzes the key drivers (commitment, integration of big data, green supply chain management, and green human resource practices) of sustainable capabilities and the influence to which these sustainable capabilities impact the banks' environmental and financial performance. Additionally, this study analyzes the impact of green management practices on the integration of big data technology with operations. The theory of dynamic capability was deployed to propose and empirically test the conceptual model. Data was collected through a self-administrated survey questionnaire from 319 participants employed at 35 banks located in six ASEAN countries. The findings indicate that big data analytics strategies have an impact on internal processes and banks' sustainable and financial performance. This study indicates that banks committed towards proper data monitoring of its clients achieve operational efficiency and sustainability goals. Moreover, our results confirm that banks practising green innovation strategies experience better environmental and economic performance as the employees of these banks have received advance green human resource training. Finally, our study found that internal and external green supply chain management practices have a positive impact on banks' environmental and financial performance, which confirms that ASEAN banks contributing in reduction of environmental impact through its operations will ultimately experience increased financial performance.

From Machine Learning Algorithms to Superior Customer Experience: Business Implications of Machine Learning-Driven Data Analytics in the Hospitality Industry

  • Egor Cherenkov;Vlad Benga;Minwoo Lee;Neil Nandwani;Kenan Raguin;Marie Clementine Sueur;Guohao Sun
    • Journal of Smart Tourism
    • /
    • v.4 no.2
    • /
    • pp.5-14
    • /
    • 2024
  • This study explores the transformative potential of machine learning (ML) and ML-driven data analytics in the hospitality industry. It provides a comprehensive overview of this emerging method, from explaining ML's origins to introducing the evolution of ML-driven data analytics in the hospitality industry. The present study emphasizes the shift embodied in ML, moving from explicit programming towards a self-learning, adaptive approach refined over time through big data. Meanwhile, social media analytics has progressed from simplistic metrics deriving nuanced qualitative insights into consumer behavior as an industry-specific example. Additionally, this study explores innovative applications of these innovative technologies in the hospitality sector, whether in demand forecasting, personalized marketing, predictive maintenance, etc. The study also emphasizes the integration of ML and social media analytics, discussing the implications like enhanced customer personalization, real-time decision-making capabilities, optimized marketing campaigns, and improved fraud detection. In conclusion, ML-driven hospitality data analytics have become indispensable in the strategic and operation machinery of contemporary hospitality businesses. It projects these technologies' continued significance in propelling data-centric advancements across the industry.

An Assessment System for Evaluating Big Data Capability Based on a Reference Model (빅데이터 역량 평가를 위한 참조모델 및 수준진단시스템 개발)

  • Cheon, Min-Kyeong;Baek, Dong-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.54-63
    • /
    • 2016
  • As technology has developed and cost for data processing has reduced, big data market has grown bigger. Developed countries such as the United States have constantly invested in big data industry and achieved some remarkable results like improving advertisement effects and getting patents for customer service. Every company aims to achieve long-term survival and profit maximization, but it needs to establish a good strategy, considering current industrial conditions so that it can accomplish its goal in big data industry. However, since domestic big data industry is at its initial stage, local companies lack systematic method to establish competitive strategy. Therefore, this research aims to help local companies diagnose their big data capabilities through a reference model and big data capability assessment system. Big data reference model consists of five maturity levels such as Ad hoc, Repeatable, Defined, Managed and Optimizing and five key dimensions such as Organization, Resources, Infrastructure, People, and Analytics. Big data assessment system is planned based on the reference model's key factors. In the Organization area, there are 4 key diagnosis factors, big data leadership, big data strategy, analytical culture and data governance. In Resource area, there are 3 factors, data management, data integrity and data security/privacy. In Infrastructure area, there are 2 factors, big data platform and data management technology. In People area, there are 3 factors, training, big data skills and business-IT alignment. In Analytics area, there are 2 factors, data analysis and data visualization. These reference model and assessment system would be a useful guideline for local companies.

Data Analytics in Education : Current and Future Directions (빅데이터를 활용한 맞춤형 교육 서비스 활성화 방안연구)

  • Kwon, Young Ok
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.87-99
    • /
    • 2013
  • Massive increases in data available to an organization are creating a new opportunity for competitive advantage. In this era of big data, developing analytics capabilities, therefore, becomes critical to take advantage of internal and external data and gain insights for data-driven decision making. However, the use of data in education is in its infancy, in comparison with business and government, and the potential for data analytics to impact education services is growing. In this paper, I survey how universities are currently using education data to improve students' performance and administrative efficiency, and propose new ways of extending the current use. In addition, with the so-called data scientist shortage, universities should be able to train professionals with data analytics skills. This paper discusses which skills are valuable to data scientists and introduces various training and certification programs offered by universities and industry. I finally conclude the paper by exploring new curriculums where students, by themselves, can learn how to find and use relevant data even in any courses.

Analysis of Big Data Visualization Technology Based on Patent Analysis (특허분석을 통한 빅 데이터의 시각화 기술 분석)

  • Rho, Seungmin;Choi, YongSoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.149-154
    • /
    • 2014
  • Modern data computing developments have led to big improvements in graphic capabilities and there are many new possibilities for data displays. The visualization has proven effective for not only presenting essential information in vast amounts of data but also driving complex analyses. Big-data analytics and discovery present new research opportunities to the computer graphics and visualization community. In this paper, we discuss the patent analysis of big data visualization technology development in major countries. Especially, we analyzed 160 patent applications and registered patents in four countries on November 2012. According to the result of analysis provided by this paper, the text clustering analysis and 2D visualization are important and urgent development is needed to be oriented. In particular, due to the increase of use of smart devices and social networks in domestic, the development of three-dimensional visualization for Big Data can be seen very urgent.

A Study on the Policy Directions for the Development of Skill Convergence in the Post-COVID19 Era (포스트코로나시대 융합인재양성을 위한 정책방향연구)

  • Kim, Eun-Bee;Cho, Dae-Yeon;Roh, Kyung-Ran;Oh, Seok-Young;Park, Kee-Burm;Ryoo, Joshua;Kim, Jhong-Yun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.247-259
    • /
    • 2021
  • This study aimed to look for educational ways to prepare for the future society for education and people of talent who will lead the post-COVID-19 era. To this end, the factors necessary for the type of future talent in the post-COVID-19 era were identified by analyzing Big data. Based on the deducted factors composing the type of talent in the post-COVID-19 era, policy direction according to the emergence of the post-COVID-19 era were deducted through the interviews with the group of experts and delphi survey, and on the basis of this, this study sought for"a plan for the educational change in line with cultivation of people of talent in the post-COVID-19 era. The results of this study are as follows. First, through the big data analytics and analysis of the interviews, convergence, ICT utilization ability, creativity, self-regulated competency and leadership were found to be the factors necessary for the type of talent in the post-COVID-19 era. Second, it considered the innovation of digital education system and the support for vulnerable classes as the issue for cultivation of people of talent in the post-COVID-19 era. Third, the most important policy with regard to the educational direction for cultivation of people of talent in the post-COVID-19 era was cultivation of convergence talents. Convergence is a very important variable in the post-COVID-19 era since it creates new values by connecting things that are separated from each other. Hopefully, this study will build a basis for competency development, education and training in preparation for the post-COVID-19 era.