• 제목/요약/키워드: Big Data Analytics Capabilities

검색결과 10건 처리시간 0.027초

Impact of Big Data Analytics on Indian E-Tailing from SCM to TCS

  • Avinash BM;Divakar GM;Rajasekhara Mouly Potluri;Megha B
    • 유통과학연구
    • /
    • 제22권8호
    • /
    • pp.65-76
    • /
    • 2024
  • Purpose: The study aims to recognize the relationship between big data analytics capabilities, big data analytics process, and perceived business performance from supply chain management to total customer satisfaction. Research design, data and methodology: The study followed a quantitative approach with a descriptive design. The data was collected from leading e-commerce companies in India using a structured questionnaire, and the data was coded and decoded using MS Excel, SPSS, and R language. It was further tested using Cronbach's alpha, KMO, and Bartlett's test for reliability and internal consistency. Results: The results showed that the big data analytics process acts as a robust mediator between big data analytics capabilities and perceived business performance. The 'direct, indirect and total effect of the model' and 'PLS-SEM model' showed that the big data analytics process directly impacts business performance. Conclusions: A complete indirect relationship exists between big data analytics capabilities and perceived business performance through the big data analytics process. The research contributesto e-commerce companies' understanding of the importance of big data analytics capabilities and processes.

스트리밍 빅데이터의 프라이버시 보호 동반 실용적 분석을 통한 지식 활용과 재사용 연구 (Research of Knowledge Management and Reusability in Streaming Big Data with Privacy Policy through Actionable Analytics)

  • 백주련;이영숙
    • 디지털산업정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.1-9
    • /
    • 2016
  • The current meaning of "Big Data" refers to all the techniques for value eduction and actionable analytics as well management tools. Particularly, with the advances of wireless sensor networks, they yield diverse patterns of digital records. The records are mostly semi-structured and unstructured data which are usually beyond of capabilities of the management tools. Such data are rapidly growing due to their complex data structures. The complex type effectively supports data exchangeability and heterogeneity and that is the main reason their volumes are getting bigger in the sensor networks. However, there are many errors and problems in applications because the managing solutions for the complex data model are rarely presented in current big data environments. To solve such problems and show our differentiation, we aim to provide the solution of actionable analytics and semantic reusability in the sensor web based streaming big data with new data structure, and to empower the competitiveness.

빅데이터 분석능력과 가치가 비즈니스 성과에 미치는 영향 (The Impact of Big Data Analytics Capabilities and Values on Business Performance)

  • 노미진;이충권
    • 스마트미디어저널
    • /
    • 제10권1호
    • /
    • pp.108-115
    • /
    • 2021
  • 본 연구는 기업의 빅데이터 분석가들을 대상으로 빅데이터의 분석능력과 가치, 그리고 비즈니스 성과와의 관련성을 살펴보았다. 빅데이터가 가져올 수 있는 가치를 거래적 가치, 전략적 가치, 변혁적 가치, 정보적 가치로 분류하였고, 이러한 가치들이 비즈니스 성과로 연결되는 지를 검증하고자 하였다. 빅데이터 분석을 수행한 경험이 있는 직원들을 대상으로 200부의 설문을 수거하여 분석하였다. 구조방정식 모형으로 가설을 검정하였고, 빅데이터 분석능력은 빅데이터의 가치와 비즈니스 성과에 의미있는 영향력을 미치는 것으로 나타났다. 빅데이터 가치들 중에서 거래적 가치, 전략적 가치, 그리고 변혁적 가치는 비즈니스 성과에 긍정적인 영향을 미치지만, 정보적 가치의 영향은 입증되지 않았다. 본 연구의 결과는 빅데이터를 활용하여 비즈니스 성과를 얻으려는 기업들에게 유용한 정보를 제공할 수 있을 것으로 기대된다.

빅 데이터 분석능력과 기업 성과 간의 관계에서 혁신 및 개선 활동과 시장 민첩성의 영향 (The Impact of Exploration and Exploitation Activities and Market Agility on the Relationship between Big Data Analytics Capability and Firms' Performance)

  • 정희경;부제만
    • 산업경영시스템학회지
    • /
    • 제45권3호
    • /
    • pp.150-162
    • /
    • 2022
  • This study investigated the impact of the latest developments in big data analytics capabilities (BDAC) on firm performance. The BDAC have the power to innovate existing management practices. Nevertheless, their impact on firm performance has not been fully is not yet fully elucidated. The BDAC relates to the flexibility of infrastructure as well as the skills of management and firm's personnel. Most studies have explored the phenomena from a theoretical perspective or based on factors such as organizational characteristics. However, this study extends the flow of previous research by proposing and testing a model which examines whether organizational exploration, exploitation and market agility mediate the relationship between the BDAC and firm performance. The proposed model was tested using survey data collected from the long-term employees over 10 years in 250 companies. The results analyzed through structural equation modeling show that a strong BDAC can help improve firm performance. An organization's ability to analyze big data affects its exploration and exploitation thereby affecting market agility, and, consequently, firm performance. These results also confirm the powerful mediating role of exploration, exploitation, and market agility in improving insights into big data utilization and improving firm performance.

Does Big Data Analytics Enhance Sustainability and Financial Performance? The Case of ASEAN Banks

  • ALI, Qaisar;SALMAN, Asma;YAACOB, Hakimah;ZAINI, Zaki;ABDULLAH, Rose
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권7호
    • /
    • pp.1-13
    • /
    • 2020
  • This study analyzes the key drivers (commitment, integration of big data, green supply chain management, and green human resource practices) of sustainable capabilities and the influence to which these sustainable capabilities impact the banks' environmental and financial performance. Additionally, this study analyzes the impact of green management practices on the integration of big data technology with operations. The theory of dynamic capability was deployed to propose and empirically test the conceptual model. Data was collected through a self-administrated survey questionnaire from 319 participants employed at 35 banks located in six ASEAN countries. The findings indicate that big data analytics strategies have an impact on internal processes and banks' sustainable and financial performance. This study indicates that banks committed towards proper data monitoring of its clients achieve operational efficiency and sustainability goals. Moreover, our results confirm that banks practising green innovation strategies experience better environmental and economic performance as the employees of these banks have received advance green human resource training. Finally, our study found that internal and external green supply chain management practices have a positive impact on banks' environmental and financial performance, which confirms that ASEAN banks contributing in reduction of environmental impact through its operations will ultimately experience increased financial performance.

From Machine Learning Algorithms to Superior Customer Experience: Business Implications of Machine Learning-Driven Data Analytics in the Hospitality Industry

  • Egor Cherenkov;Vlad Benga;Minwoo Lee;Neil Nandwani;Kenan Raguin;Marie Clementine Sueur;Guohao Sun
    • Journal of Smart Tourism
    • /
    • 제4권2호
    • /
    • pp.5-14
    • /
    • 2024
  • This study explores the transformative potential of machine learning (ML) and ML-driven data analytics in the hospitality industry. It provides a comprehensive overview of this emerging method, from explaining ML's origins to introducing the evolution of ML-driven data analytics in the hospitality industry. The present study emphasizes the shift embodied in ML, moving from explicit programming towards a self-learning, adaptive approach refined over time through big data. Meanwhile, social media analytics has progressed from simplistic metrics deriving nuanced qualitative insights into consumer behavior as an industry-specific example. Additionally, this study explores innovative applications of these innovative technologies in the hospitality sector, whether in demand forecasting, personalized marketing, predictive maintenance, etc. The study also emphasizes the integration of ML and social media analytics, discussing the implications like enhanced customer personalization, real-time decision-making capabilities, optimized marketing campaigns, and improved fraud detection. In conclusion, ML-driven hospitality data analytics have become indispensable in the strategic and operation machinery of contemporary hospitality businesses. It projects these technologies' continued significance in propelling data-centric advancements across the industry.

빅데이터 역량 평가를 위한 참조모델 및 수준진단시스템 개발 (An Assessment System for Evaluating Big Data Capability Based on a Reference Model)

  • 천민경;백동현
    • 산업경영시스템학회지
    • /
    • 제39권2호
    • /
    • pp.54-63
    • /
    • 2016
  • As technology has developed and cost for data processing has reduced, big data market has grown bigger. Developed countries such as the United States have constantly invested in big data industry and achieved some remarkable results like improving advertisement effects and getting patents for customer service. Every company aims to achieve long-term survival and profit maximization, but it needs to establish a good strategy, considering current industrial conditions so that it can accomplish its goal in big data industry. However, since domestic big data industry is at its initial stage, local companies lack systematic method to establish competitive strategy. Therefore, this research aims to help local companies diagnose their big data capabilities through a reference model and big data capability assessment system. Big data reference model consists of five maturity levels such as Ad hoc, Repeatable, Defined, Managed and Optimizing and five key dimensions such as Organization, Resources, Infrastructure, People, and Analytics. Big data assessment system is planned based on the reference model's key factors. In the Organization area, there are 4 key diagnosis factors, big data leadership, big data strategy, analytical culture and data governance. In Resource area, there are 3 factors, data management, data integrity and data security/privacy. In Infrastructure area, there are 2 factors, big data platform and data management technology. In People area, there are 3 factors, training, big data skills and business-IT alignment. In Analytics area, there are 2 factors, data analysis and data visualization. These reference model and assessment system would be a useful guideline for local companies.

빅데이터를 활용한 맞춤형 교육 서비스 활성화 방안연구 (Data Analytics in Education : Current and Future Directions)

  • 권영옥
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.87-99
    • /
    • 2013
  • 데이터의 급속한 증가로 데이터를 활용한 새로운 가치 창출은 기업뿐 아니라 국가 경쟁력의 중요한 요소로 대두대고 있다. 이에 따라 데이터를 분석하여 통찰력을 제시할 수 있는 데이터 과학자라 불리는 분석 전문가의 수요가 늘고 있는데, 이들 전문 인력 양성을 위해서는 정부, 학계, 산업의 공동 노력이 필요하다. 본 연구는 특히 교육 분야에서의 빅데이터 활용현황을 조사하고, 새로운 데이터 기반의 맞춤형 서비스 및 교육 과정을 제안한다. 또한, 데이터 과학자 양성을 위한 국내외 대학 및 기업의 대표적인 프로그램들을 살펴보고, 장기적인 관점에서 분석능력을 배양할 수 있는 새로운 교과과정도 제시한다. 본 연구는 다양한 사례를 바탕으로 대학에서 데이터를 활용한 교육환경 개선을 위한 방안을 모색하는데 도움을 주고자 한다.

특허분석을 통한 빅 데이터의 시각화 기술 분석 (Analysis of Big Data Visualization Technology Based on Patent Analysis)

  • 노승민;최용수
    • 전자공학회논문지
    • /
    • 제51권7호
    • /
    • pp.149-154
    • /
    • 2014
  • 현대 데이터 컴퓨팅의 발전은 그래픽 기능의 향상을 이끌고 데이터 디스플레이를 위한 많은 가능성을 가지고 있다. 시각화는 방대한 양의 데이터에서 중요한 정보를 나타내줄 뿐만 아니라 복잡한 분석 방식에 효율적임이 증명되었다. 빅 데이터 분석과 발견은 컴퓨터 그래픽과 시각화 커뮤니티에서 새로운 연구 기회로 제시되고 있다. 본 논문에서는 주요 시장 국의 특허 분석을 통해 빅 데이터의 시각화 기술 개발 동향을 살펴보고자 한다. 특히, 2012년 11월을 기준으로 4개국에 출원 및 등록되어 있는 160건을 대상으로 분석을 진행하였다. 분석결과에 따르면 텍스트 클러스터링, 2D 시각화 분야의 기술개발이 중요하며 이에 대한 시급한 개발을 지향할 필요가 있다. 특히, 국내에서 다양한 스마트 디바이스의 증가와 소셜 네트워크 사용 증대로 인해 빅 데이터 입체 시각화 기술 개발이 매우 시급함을 알 수 있다.

포스트코로나시대 융합인재양성을 위한 정책방향연구 (A Study on the Policy Directions for the Development of Skill Convergence in the Post-COVID19 Era)

  • 김은비;조대연;노경란;오석영;박기범;류성창;김종윤
    • 한국융합학회논문지
    • /
    • 제12권3호
    • /
    • pp.247-259
    • /
    • 2021
  • 본 연구에서는 포스트코로나 시대를 주도할 교육과 인재양성을 위해 미래 사회를 대비할 수 있는 교육 방향을 모색하고자 한다. 이를 위해 빅데이터 분석을 통해 포스트코로나 인재상을 알아본 후 도출된 포스트코로나 인재상을 바탕으로 전문가 집단의 인터뷰와 델파이 조사를 통해 포스트코로나 시대 도래에 따른 이슈를 도출하고 이를 토대로 '포스트코로나시대 융합인재양성을 위한 정책방향'을 모색하고자 하였다. 연구결과는 다음과 같다. 첫째, 빅 데이터 분석과 온라인 인터뷰 분석을 통해 융합, ICT 활용 능력, 창의성, 자기주도학습 능력, 리더십을 COVID 19 이후 시대에 인재역량으로 보았다. 둘째, 디지털 교육 시스템의 혁신, 취약계층에 대한 지원, 학급당 학생 수 감소가 새로운 인재육성을 위한 교육 이슈로 보았으며 셋째, COVID 19 이후 시대의 인재 육성에 대한 교육 방향 중 가장 중요한 정책은 융합 인재 양성이었다. 융합은 서로 분리된 것들을 연결함으로써 새로운 가치를 창조하기 때문에 매우 중요한 이슈라고 볼 수 있다. 본 연구는 포스트코로나 시대를 대비한 인재양성 및 이를 위한 교육, 훈련에 필요한 기반을 마련하고 기초자료를 제시하는데 의의가 있다.