• Title/Summary/Keyword: Bifurcation Theory

Search Result 97, Processing Time 0.024 seconds

BIFURCATION THEORY FOR A CIRCULAR ARCH SUBJECT TO NORMAL PRESSURE

  • Bang, Keumseong;Go, JaeGwi
    • Korean Journal of Mathematics
    • /
    • v.14 no.1
    • /
    • pp.113-123
    • /
    • 2006
  • The arches may buckle in a symmetrical snap-through mode or in an asymmetry bifurcation mode if the load reaches a certain value. Each bifurcation curve develops as pressure increases. The governing equation is derived according to the bending theory. The balance of forces provides a nonlinear equilibrium equation. Bifurcation theory near trivial solution of the equation is developed, and the buckling pressures are investigated for various spring constants and opening angles.

  • PDF

BIFURCATION ANALYSIS OF A DELAYED EPIDEMIC MODEL WITH DIFFUSION

  • Xu, Changjin;Liao, Maoxin
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.321-338
    • /
    • 2011
  • In this paper, a class of delayed epidemic model with diffusion is investigated. By analyzing the associated characteristic transcendental equation, its linear stability is investigated and Hopf bifurcation is demonstrated. Some explicit formulae determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulation are also carried out to support our analytical findings. Finally, biological explanations and main conclusions are given.

VARIATIONAL RESULT FOR THE BIFURCATION PROBLEM OF THE HAMILTONIAN SYSTEM

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1149-1167
    • /
    • 2015
  • We get a theorem which shows the existence of at least four $2{\pi}$-periodic weak solutions for the bifurcation problem of the Hamiltonian system with the superquadratic nonlinearity. We obtain this result by using the variational method, the critical point theory induced from the limit relative category theory.

Bifurcation Modes in the Limit of Zero Thickness of Axially Compressed Circular Cylindrical Shell

  • Kwon, Young-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.39-47
    • /
    • 2000
  • Bifurcation intability modes of axially compressed circular cylindrical shell are investigated in the limit of zero thickness (i.e., h (thickness) ${\rightarrow}$ 0) analytically, adopting the general stability theory developed by Triantafyllidis and Kwon (1987) and Kwon (1992). The primary state of the shell is obtained in a closed form using the asymptotic technique, and then the straight-forward bifurcation analysis is followed according to the general stability theory to obtain the bifurcation modes in the limit of zero thickness in a full analytical manner. Hence, the closed form bifurcation solution is obtained. Finally, the result is compared with the classical one.

  • PDF

FACTS Application for the Voltage Stability with the Analysis of Bifurcation Theory (전압안정도 향상을 위한 FACTS의 적용과 Bifurcation이론 해석)

  • 주기성;김진오
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.394-402
    • /
    • 2000
  • This paper proposes a bifurcation theory method applied for voltage stability analysis and shows the improvement of voltage stability by attaching the FACTS devices in the power system. A power system is generally expressed by a set of equations of highly nonlinear dynamical system which includes system parameters(real or reactive power). Sometimes variation of parameters in the system may result in complication behaviors which give rise to system instability. The addition of FACTS increases the range of voltage stability in the power system. The effect of FACTS which improves voltage stability are illustrated in the case studies by delaying of Unstable Hopf Bifurcation and Saddle Node Bifurcation.

  • PDF

WEAK SOLUTIONS FOR THE HAMILTONIAN BIFURCATION PROBLEM

  • Choi, Q-Heung;Jung, Tacksun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.667-680
    • /
    • 2016
  • We get a theorem which shows the multiple weak solutions for the bifurcation problem of the superquadratic nonlinear Hamiltonian system. We obtain this result by using the variational method, the critical point theory in terms of the $S^1$-invariant functions and the $S^1$-invariant linear subspaces.

Localization Analysis of Concrete using Bifurcation Theory (분기이론에 의한 콘크리트의 국소화 해석)

  • 송하원;우승민;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.353-358
    • /
    • 1998
  • The strain localization is a discontinuous phenomenon that addresses the formation of jumps of the field variables across a singularity surface. It has become widely accepted that the localization may occur as the result of discontinuous bifurcation which corresponds to the loss of ellipticity of the governing differential equations for elasto-plastic continua. In this paper, condition for strain localization in concrete based on bifurcation theory is studied and localization tensor analysis algorithm is employed to determine the directions of localization of deformations in concrete. By applying a plasticity model of concrete into the algorithm, localization analysis is performed concrete under uniaxial tension, pure shear and uniaxial compression.

  • PDF

BIFURCATION PROBLEM FOR THE SUPERLINEAR ELLIPTIC OPERATOR

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.333-341
    • /
    • 2012
  • We investigate the number of solutions for the superlinear elliptic bifurcation problem with Dirichlet boundary condition. We get a theorem which shows the existence of at least $k$ weak solutions for the superlinear elliptic bifurcation problem with boundary value condition. We obtain this result by using the critical point theory induced from invariant linear subspace and the invariant functional.

HAMILTONIAN SYSTEM WITH THE SUPERQUADRATIC NONLINEARITY AND THE LIMIT RELATIVE CATEGORY THEORY

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.471-489
    • /
    • 2014
  • We investigate the number of the weak periodic solutions for the bifurcation problem of the Hamiltonian system with the superquadratic nonlinearity. We get one theorem which shows the existence of at least two weak periodic solutions for this system. We obtain this result by using variational method, critical point theory induced from the limit relative category theory.

PROFITABILITY AND SUSTAINABILITY OF A TOURISM-BASED SOCIAL-ECOLOGICAL DYNAMICAL SYSTEM BY BIFURCATION ANALYSIS

  • Afsharnezhad, Zahra;Dadi, Zohreh;Monfared, Zahra
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.1-16
    • /
    • 2017
  • In this paper we study a four dimensional tourism-based social-ecological dynamical system. In fact we analyse tourism profitability, compatibility and sustainability by using bifurcation theory in terms of structural properties of attractors of system. For this purpose first we transformed it into a three dimensional system such that the reduced system is the extended and modified model of the previous three dimensional models suggested for tourism with the same dimension. Then we investigate transcritical, pitchfork and saddle-node bifurcation points of system. And numerically by finding some branches of stable equilibria for system show the profitability of tourism industry. Then by determining the Hopf bifurcation points of system we find a family of stable attractors for that by numerical techniques. Finally we conclude the existence of these stable limit cycles implies profitability and compatibility and then the sustainability of tourism.