• Title/Summary/Keyword: Bifacial module

Search Result 10, Processing Time 0.024 seconds

A Preliminary Research of the Bifacial PV System Under Installation Conditions (설치환경 및 조건에 따른 양면수광형 태양광발전시스템의 기초 특성 연구)

  • Jang, Ju-Hee;Kwon, Oh-Hyun;Lee, Sang-Hyuk;Shin, Min-Su;Lee, Kyung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.6
    • /
    • pp.51-63
    • /
    • 2018
  • Nowadays the bifacial PV system market and its applications are increasing rapidly. The performance of the bifacial PV system take advantage of its rear surface irradiance. Also, the ground albedo, PV module tilt and azimuth, PV module installation height, shading effect and module temperature are factors of bifacial PV system performance. This paper investigates how the performance of bifacial PV system is influenced by above factors. First, we analyzed the energy yield depending on PV module installation by simulation. Secondly, we compare energy performance evaluation of monofacial and bifacial module on different weather condition by experiment. Thirdly, we tested the albedo effect and checked operating characteristics using Dupont Tyvek material for the bifacial PV module. Fourthly, we check the shading effect of bifacial PV module on bypass diode operating. Finally, we applied the bifacial PV module in the nearby subway station for the noise reduction barrier using a qualified simulation program. In summary, we confirm that the energy performance superiority of the bifacial PV module has a lot of application use including road. Also, we have confirmed the bifacial module and inverter design should be considered by rear surface irradiance.

Fabrication of Shingled Design Bifacial c-Si Photovoltaic Modules (슁글드 디자인 고출력 양면수광형 단결정 실리콘 태양광 모듈 제작)

  • Park, Min-Joon;Kim, Minseob;Shin, Jinho;Byeon, Su-Bin;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • Bifacial photovoltaic (PV) technology has received considerable attention in recent years due to the potential to achieve a higher annual energy yield compared to its monofacial PV systems. In this study, we fabricated the bifacial c-Si PV module with a shingled design using the conventional patterned bifacial solar cells. The shingled design PV module has recently attracted attention as a high-power module. Compared to the conventional module, it can have a much more active area due to the busbar-free structure. We employed the transparent backsheet for a light reception at the rear side of the PV module. Finally, we achieved a conversion power of 453.9 W for a 1300 mm × 2000 mm area. Moreover, we perform reliability tests to verify the durability of our Shingled Design Bifacial c-Si Photovoltaic module.

Evaluation of Bifacial Si Solar Module with Different Albedo Conditions (양면수광형 실리콘 태양광 모듈의 바닥면 반사조건 변화에 따른 발전성능 평가)

  • Park, Dohyun;Kim, Minsu;So, Wonshoup;Oh, Soo-Young;Park, Hyeonwook;Jang, Sungho;Park, Sang-Hwan;Kim, Woo Kyoung
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.62-67
    • /
    • 2018
  • Multi-wire busbar-type bifacial n-type Si solar cells have been used for the fabrication of monofacial and bifacial photovoltaic (PV) module, where bifacial module was equipped with transparent backsheet while monofacial module was prepared using white backsheet. The comparison of six-day accumulated power production obtained from outdoor test under gray cement ground conditions using 60cell monofacial and bifacial PV modules suggested the bifacial gain of over 20% could be achieved. Furthermore, the outdoor evaluation tests of bifacial modules with different ground conditions such as cement (reference), green paint, white paint and green artificial grass, were performed. It turned out white paint showed the best albedo and thus the highest power production, while green paint and artificial grass showed less power generation than cement ground.

Analysis of Temperature and Power Generation Characteristics of Bifacial BIPV System Applied into Curtain Wall (양면형 BIPV 시스템의 커튼월 적용에 따른 온도 및 발전특성 분석)

  • Kang, Jun-Gu;Kim, Yong-Jae;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • BIPV system not only produces electricity at building, but also acts as a material for building envelope. Thus, it can increase the economical efficiency of PV system by saving the cost for building materials. Bifacial solar cell can convert solar energy to electrical energy from both sides of the cell. In addition, it is designed as 3 busbar layout which is the same with ordinary mono-facial solar cells. Therefore, many of the module manufacturers can easily use the bifacial solar cells without changing their manufacturing equipments. Moreover, bifacial PV system has much potential in building application by utilizing glass-to-glass structure of PV module. However, the electrical generation of the bifacial PV module depends on the characteristics of the building surface which faces the module, as well as outdoor environment. Therefore, in order to apply the bifacial PV module to building envelope as BIPV system, its power generation characteristics are carefully evaluated. For this purpose this study focused on the electrical performance of the bifacial BIPV system through the comparative outdoor experiments. As a result, the power generation performance of the bifacial BIPV system was improved by up to 21% compared to that of the monofacial BIPV system. Therefore, it is claimed that the bifacial BIPV system can replace the conventional BIPV system to improve the PV power generation in buildings.

Analysis of Generation Characteristics of a Bifacial BIPV System According to Installation Methods (양면형 BIPV 시스템의 설치환경에 따른 발전특성 분석)

  • Kang, Jun Gu;Kim, Jin Hee;Kim, Jun Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.121-125
    • /
    • 2015
  • BIPV system is one of the best ways to harness PV module. The BIPV system not only produces electricity, but also acts as a building envelope. Thus, it has the strong point of increasing the economical efficiency by applying the PV modules to the buildings. Bifacial solar cells can convert solar energy to electrical energy from both sides of the module. In addition, it is designed as 3 busbar layout which is the same with ordinary mono-facial soalr cells. Therefore, many of the module manufacturers can easily produce the bifacial solar cells without changing their manufacturing equipment. Moreover, bifacial BIPV system has much potential in building application by utilizing glass to glass structure. However, the performance of bifacial solar cells depends on a variety of factors, ranging from the back surface to surrounding conditions. Therefore, in order to apply bifacial solar cells to buildings, an analysis of bifacial PV module performance should be carried out that includes a consideration of various design elements, and reflects a wide range of installation conditions. As a result it found that the white insulation reflector type can improve the performance of the bifacial BIPV system by 16%, compared to the black insulation reflector type. The performance of the bifacial BIPV was also shown to be influenced by inclination angle, due to changes in both the amount of radiation captured on the front face and the radiation transmitted to the rear face through the transparent space. In this study is limited design condition and installation condition. Accordingly follow-up researches in this part need to be conducted.

Characteristic Evaluation of Bifacial Solar Module Power Plant Using Back Sheet as Reflective (백시트를 반사재로 이용한 양면태양광 발전시스템 특성평가)

  • Kim, Hyun Jun;Jho, Min Jae;Cha, Hyang Woo;Kim, Kwang Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.112-116
    • /
    • 2022
  • The demand for a rear reflective material is continuing according to the expansion of the bifacial soar module and the effect on the re-reflection of the ground using a back sheet that is not used due to the increase in the supply of the bifacial solar module was confirmed. For analysis, a bifacial solar module with an output of 445W was connected to a single inverter of 49.84kW, and analysis of each two inverters was carried out. In the analysis of the results, it was confirmed that the generation amount increased by 5.25% compared to the case where the back sheet reflective film was not installed and it was confirmed that the increase in the generation amount was the noon time when strong solar radiation was irradiated, not the time of sunrise and sunset.

Evaluation of Power Generation Performance for Bifacial Si Photovoltaic Modules installed on Different Artificial Grass Floors (인조잔디 바닥종류에 따른 양면수광형 실리콘 태양광 모듈의 발전성능 평가)

  • Yoo, Younggyun;Seo, Yeongju;Park, Dohyun;Kim, Minsu;Jang, Hojun;Kwon, Young Hoon;Hwangbo, Chul;Kim, Woo Kyoung;Chang, Sungho
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.1-9
    • /
    • 2018
  • In this study, the outdoor evaluation test was performed to characterize the highly-reflective artificial grass to be used for bifacial photovoltaic (PV) power generation system. The 60-cell n-type Si monofacial and bifacial PV modules were employed, where two types of bifacial modules were equipped with split-type and box-type junction boxes, respectively. The results showed that the split-type junction box improved the rear-side power production and thus energy yield of bifacial module compared to the box-type junction box causing the shadow effect. Highly-reflective artificial grass achieved relatively high albedo of 0.18, and excellent bifacial gain of 33%, compared to conventional artificial grass with an albedo of 0.14-0.15, and bifacial gain of 29-30%.

Power Prediction of P-Type Si Bifacial PV Module Using View Factor for the Application to Microgrid Network (View Factor를 고려한 마이크로그리드 적용용 고효율 P-Type Si 양면형 태양광 모듈의 출력량 예측)

  • Choi, Jin Ho;Kim, David Kwangsoon;Cha, Hae Lim;Kim, Gyu Gwang;Bhang, Byeong Gwan;Park, So Young;Ahn, Hyung Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.182-187
    • /
    • 2018
  • In this study, 20.8% of a p-type Si bifacial solar cell was used to develop a photovoltaic (PV) module to obtain the maximum power under a limited installation area. The transparent back sheet material was replaced during fabrication with a white one, which is opaque in commercial products. This is very beneficial for the generation of more electricity, owing to the additional power generation via absorption of light from the rear side. A new model is suggested herein to predict the power of the bifacial PV module by considering the backside reflections from the roof and/or environment. This model considers not only the frontside reflection, but also the nonuniformity of the backside light sources. Theoretical predictions were compared to experimental data to prove the validity of this model, the error range for which ranged from 0.32% to 8.49%. Especially, under $700W/m^2$, the error rate was as low as 2.25%. This work could provide theoretical and experimental bases for application to a distributed and microgrid network.

Structural Analysis Model to Evaluate the Mechanical Reliability of Large-area Photovoltaic Modules (대면적 태양광 모듈의 기계적 신뢰성 평가를 위한 모델)

  • Noh, Yo Han;Jeong, Jeong Ho;Lee, Jaehyeong
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.56-61
    • /
    • 2022
  • Recently, the expansion of the domestic solar market due to the promotion of eco-friendly and alternative energy-related policies is promising, and it is expected to lead the high-efficiency/high-power module market based on M10 or larger cells to reduce LCOE, 540-560W, M12 based on M10 cells Compared to the existing technology with an output of 650-700W based on cells, it is necessary to secure competitiveness through the development of modules with 600W based on M10 cells and 750W based on M12 cells. For the development of high efficiency/high-power n-type bifacial, it is necessary to secure a lightweight technology and structure due to the increase in weight of the glass to glass module according to the large area of the module. Since the mechanical strength characteristics according to the large area and high weight of the module are very important, design values such as a frame of a new structure that can withstand the mechanical load of the Mechanical Load Test and the location of the mounting hole are required. In this study, a structural analysis design model was introduced to secure mechanical reliability according to the enlargement of the module area, and the design model was verified through the mechanical load test of the actual product. It can be used as a design model to secure the mechanical reliability required for PV modules by variables such as module area, frame shape, and the location and quantity of mounting holes of the structural analysis model verified. A relationship of output drop can be obtained.

A Study on the Relationship between Factors Affecting Soldering Characteristics and Efficiency of Half-cell Soldering Process with Multi-wires (Half-cell 기반 multi-wires 접합 공정에서 접합 특성에 영향을 주는 요인과 효율의 상관관계 연구)

  • Kim, Jae Hun;Son, Hyoung Jin;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.65-70
    • /
    • 2019
  • As a demand of higher power photovoltaic modules, shingled, multi-busbar, half-cell, and bifacial techniques are developed. Multi-busbar module has advantage for large amount of light havesting. And, half-cell is high power module for reducing resistive losses and higher shade tolerance. Recently, researches on multi-busbar is focused on reliability according to adhesion and intermetallic compound between Sn-Pb solder and Ag electrode. And half-cell module is researched to comparing with full-sized cell module for structure difference. In this study, we investigated the factors affecting to efficiency and adhesion of multi-wires half-cell module according to wire thickness, solder thickness, and flux. The results of solar simulator and peel test was that peel strength and efficiency of soldered cell is not related. But samples with flux including high solid material showed high efficiency. The results of FE-SEM and EDX line scan on cross-section between wire and Ag electrode for different flux showed thickness of solder joint between wire and Ag electrode is increasing through solid material increasing. Flux including high solid material would affect to solder behavior on Ag electrode. Higher solid material occurred lower growth of IMC layer because solder permeate to sider of wire ribbon than Ag electrode. And it increased fill factor for high efficiency. In soldering process, amount of solid material in flux and solder thickness are the factor related with characteristic of soldered photovoltaic cell.