• 제목/요약/키워드: Bidirectional power control

검색결과 183건 처리시간 0.031초

Controller Optimization for Bidirectional Power Flow in Medium-Voltage DC Power Systems

  • Chung, Il-Yop;Liu, Wenxin;Cartes, David A.;Cho, Soo-Hwan;Kang, Hyun-Koo
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권6호
    • /
    • pp.750-759
    • /
    • 2011
  • This paper focuses on the control of bidirectional power flow in the electric shipboard power systems, especially in the Medium-Voltage Direct Current (MVDC) shipboard power system. Bidirectional power control between the main MVDC bus and the local zones can improve the energy efficiency and control flexibility of electric ship systems. However, since the MVDC system contains various nonlinear loads such as pulsed power load and radar in various subsystems, the voltage of the MVDC and the local zones varies significantly. This voltage variation affects the control performance of the bidirectional DC-DC converters as exogenous disturbances. To improve the control performance regardless of uncertainties and disturbances, this paper proposes a novel controller design method of the bidirectional DC-DC converters using $L_1$ control theory and intelligent optimization algorithm. The performance of the proposed method is verified via large-scale real-time digital simulation of a notional shipboard MVDC power system.

PPS 제어기법을 적용한 48V-400V 비절연 양방향 DC-DC컨버터 (A 48V-400V Non-isolated Bidirectional Soft-switching DC-DC Converter for Residential ESS)

  • 정현주;권민호;최세완
    • 전력전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.190-198
    • /
    • 2018
  • This paper proposes a nonisolated, bidirectional, soft-switching DC - DC converter with PWM plus phase shift (PPS) control. The proposed converter has an input-parallel/output-series configuration and can achieve the interleaving effect and high voltage gains, resulting in decreased voltage ratings in all related devices. The proposed converter can operate under zero-voltage switching (ZVS) conditions for all switches in continuous conduction mode. The power flow of the proposed converter can be controlled by changing the phase shift angle, and the duty is controlled to balance the voltage of four high voltage side capacitors. The PPS control device of the proposed converter is simple in structure and presents symmetrical switching patterns under a bidirectional power flow. The PPS control also ensures ZVS during charging and discharging at all loads and equalizes the voltage ratings of the output capacitors and switches. To verify the validity of the proposed converter, an experimental investigation of a 2 kW prototype is performed in both charging and discharging modes under different load conditions and a bidirectional power flow.

Model Predictive Control of Bidirectional AC-DC Converter for Energy Storage System

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.165-175
    • /
    • 2015
  • Energy storage system has been widely applied in power distribution sectors as well as in renewable energy sources to ensure uninterruptible power supply. This paper presents a model predictive algorithm to control a bidirectional AC-DC converter, which is used in an energy storage system for power transferring between the three-phase AC voltage supply and energy storage devices. This model predictive control (MPC) algorithm utilizes the discrete behavior of the converter and predicts the future variables of the system by defining cost functions for all possible switching states. Subsequently, the switching state that corresponds to the minimum cost function is selected for the next sampling period for firing the switches of the AC-DC converter. The proposed model predictive control scheme of the AC-DC converter allows bidirectional power flow with instantaneous mode change capability and fast dynamic response. The performance of the MPC controlled bidirectional AC-DC converter is simulated with MATLAB/Simulink(R) and further verified with 3.0kW experimental prototypes. Both the simulation and experimental results show that, the AC-DC converter is operated with unity power factor, acceptable THD (3.3% during rectifier mode and 3.5% during inverter mode) level of AC current and very low DC voltage ripple. Moreover, an efficiency comparison is performed between the proposed MPC and conventional VOC-based PWM controller of the bidirectional AC-DC converter which ensures the effectiveness of MPC controller.

A Bidirectional Three-level DC-DC Converter with a Wide Voltage Conversion Range for Hybrid Energy Source Electric Vehicles

  • Wang, Ping;Zhao, Chendong;Zhang, Yun;Li, Jing;Gao, Yongping
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.334-345
    • /
    • 2017
  • In order to meet the increasing needs of the hybrid energy source system for electric vehicles, which demand bidirectional power flow capability with a wide-voltage-conversion range, a bidirectional three-level DC-DC converter and some control strategies for hybrid energy source electric vehicles are proposed. The proposed topology is synthesized from Buck and Boost three-level DC-DC topologies with a high voltage-gain and non-extreme duty cycles, and the bidirectional operation principle is analyzed. In addition, the inductor current ripple can be effectively reduced within the permitted duty cycle range by the coordinated control between the current fluctuation reduction and the non-extreme duty cycles. Furthermore, benefitting from duty cycle disturbance control, series-connected capacitor voltages can also be well balanced, even with the discrepant rise and fall time of power switches and the somewhat unequal capacitances of series-connected capacitors. Finally, experiment results of the bidirectional operations are given to verify the validity and feasibility of the proposed converter and control strategies. It is shown to be suitable for hybrid energy source electric vehicles.

Bidirectional Power Conversion of Isolated Switched-Capacitor Topology for Photovoltaic Differential Power Processors

  • Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1629-1638
    • /
    • 2016
  • Differential power processing (DPP) systems are among the most effective architectures for photovoltaic (PV) power systems because they are highly efficient as a result of their distributed local maximum power point tracking ability, which allows the fractional processing of the total generated power. However, DPP systems require a high-efficiency, high step-up/down bidirectional converter with broad operating ranges and galvanic isolation. This study proposes a single, magnetic, high-efficiency, high step-up/down bidirectional DC-DC converter. The proposed converter is composed of a bidirectional flyback and a bidirectional isolated switched-capacitor cell, which are competitively cheap. The output terminals of the flyback converter and switched-capacitor cell are connected in series to obtain the voltage step-up. In the reverse power flow, the converter reciprocally operates with high efficiency across a broad operating range because it uses hard switching instead of soft switching. The proposed topology achieves a genuine on-off interleaved energy transfer at the transformer core and windings, thus providing an excellent utilization ratio. The dynamic characteristics of the converter are analyzed for the controller design. Finally, a 240 W hardware prototype is constructed to demonstrate the operation of the bidirectional converter under a current feedback control loop. To improve the efficiency of a PV system, the maximum power point tracking method is applied to the proposed converter.

Bidirectional Dual Active Half-Bridge Converter Integrated High Power Factor Correction

  • Ngo, AnhTuan;Nam, Kwanghee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.444-446
    • /
    • 2011
  • A bidirectional dual active converter with the power factor control capability is proposed as a battery charger. The source side half-bridge acts as a PWM converter that maintains the unity power factor. The battery side half-bridge converter acts as a dual active bridge (DAB) together shares the same DC link voltage with PWM converter. The imbalance voltage phenomenon is eliminated by employing asymmetric duty cycle technique. Simulation results are included to verify theoretical analysis.

  • PDF

New Control Method for Power Decoupling of Electrolytic Capacitor-less Photovoltaic Micro-Inverter with Primary Side Regulation

  • Irfan, Mohammad Sameer;Shin, Jong-Hyun;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.677-687
    • /
    • 2018
  • This paper presents a novel power decoupling control scheme with the bidirectional buck-boost converter for primary-side regulation photovoltaic (PV) micro-inverter. With the proposed power decoupling control scheme, small-capacitance film capacitors are used to overcome the life-span and reliability limitations of the large-capacitance electrolytic capacitors. Then, an improved flyback PV inverter is employed in continuous conduction mode with primary-side regulation for the PV power conditioning. The proposed power-decoupling controller shares the reference for primary side current regulation of the flyback PV inverter. The decoupling controller shapes the input current of the bidirectional buck-boost converter. The shared reference eliminates the phase-delay between the input current to the bidirectional buck-boost converter and the double frequency current at the PV primary current. The elimination of the phase-delay in dynamic response enhances the ripple rejection capability of the power decoupling buck-boost converter even with small film capacitor. With proposed power decoupling control scheme, the additional advantage of the primary-side regulation of flyback PV inverter is that there is no need to have an extra current sensor for obtaining the ripplecurrent reference of the decoupling current-controller of the power-decoupling buck-boost converter. Therefore, the proposed power decoupling control scheme is cost-effective as well as the size benefit. A new transient analysis is carried out which includes the source voltage dynamics instead of considering the source voltage as a pure voltage source. For verification of the proposed control scheme, simulation and experimental results are presented.

양방향 경계모드 벅/부스트 컨버터의 디지털 제어기법 (Digital Control Techniques for Bidirectional CRM Buck/Boost Converter)

  • 이상연;이우석;이일운
    • 전력전자학회논문지
    • /
    • 제28권1호
    • /
    • pp.48-58
    • /
    • 2023
  • This paper presents the digital control techniques of a bidirectional CRM(critical-conduction mode) buck(boost) converter, a dead-time design method that optimizes ZVS(zero-voltage switching) and valley-switching operation, and a switching-frequency limitation that ensures stable converter operation. To verify the feasibility of the design, a Si-MOSFET-based bidirectional CRM buck(boost) converter is built with 260-430 V input, 160-240 V output, and 1.0 kW rated capacity. The bidirectional CRM converter achieves an efficiency of up to 99.6% at buck mode and 98.7% at boost mode under rated load conditions.

연료전지자동차에서 연료이용률과 연료전지 내구성 향상을 위한 양방향 DC-DC 컨버터의 제어기법 (A Control Method of Bidirectional DC-DC Converter for Fuel Utilization and Durability Improvement in Fuel Cell Vehicles)

  • 조진상;정상민;이진희;한수빈;최세완
    • 전력전자학회논문지
    • /
    • 제10권5호
    • /
    • pp.428-435
    • /
    • 2005
  • 본 논문에서는 연료전지 자동차와 같은 하이브리드 시스템에서 양방향 DC-DC 컨버터에 의한 충${\cdot} $방전 동작시 지령전력을 정확히 제어하여 연료전지의 내구성을 향상시키기 위한 전력제어기를 제안하고자 한다. 또한 연료이용률을 향상시키고 배터리의 SOC를 일정하게 하여 에너지를 효율적으로 사용하기 위한 양방향컨버터의 충${\cdot}$방전 운전 알고리즘을 제안한다.

Design and Control of a Bidirectional Power Conversion System with 3-level T-type Inverter for Energy Storage Systems

  • Sung, Won-Yong;Ahn, Hyo Min;Oh, Chang-Yeol;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.326-332
    • /
    • 2018
  • In this paper, the design process and the control method of the power conversion system (PCS) that consists of a bidirectional DC-DC converter and a 3-level T-type inverter for an energy storage system is presented. Especially the design method of the output LCL filter for a 3-lvel T-type inverter without complex mathematical process are proposed. The validity of the control method and design process in this paper are verified through simulation and experimental analysis.