• 제목/요약/키워드: Biaxial stress

검색결과 209건 처리시간 0.025초

Effect of different grinding burs on the physical properties of zirconia

  • Lee, Kyung-Rok;Choe, Han-Cheol;Heo, Yu-Ri;Lee, Jang-Jae;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권2호
    • /
    • pp.137-143
    • /
    • 2016
  • PURPOSE. Grinding with less stress on 3Y-TZP through proper selection of methods and instruments can lead to a long-term success of prosthesis. The purpose of this study was to compare the phase transformation and physical properties after zirconia surface grinding with 3 different grinding burs. MATERIALS AND METHODS. Forty disc-shaped zirconia specimens were fabricated. Each Ten specimens were ground with AllCeramic SuperMax (NTI, Kahla, Germany), Dura-Green DIA (Shofu Inc., Kyoto, Japan), and Dura-Green (Shofu Inc., Kyoto, Japan). Ten specimens were not ground and used as a control group. After the specimen grinding, XRD analysis, surface roughness test, FE-SEM imaging, and biaxial flexural strength test were performed. RESULTS. After surface grinding, small amount of monoclinic phase in all experimental groups was observed. The phase change was higher in specimens, which were ground with Dura-Green DIA and AllCeramic SuperMax burs. The roughness of surfaces increased in specimens, which were ground with Dura-Green DIA and AllCeramic SuperMax burs than control groups and ground with Dura-Green. All experimental groups showed lower flexural strength than control group, but there was no statistically significant difference between control group and ground with Dura-Green DIA and AllCeramic SuperMax burs. The specimens, which were ground with Dura-Green showed the lowest strength. CONCLUSION. The use of dedicated zirconia-specific grinding burs such as Dura-Green DIA and AllCeramic SuperMax burs decreases the grinding time and did not significantly affect the flexural strength of zirconia, and therefore, they may be recommended. However, a fine polishing process should be accompanied to reduce the surface roughness after grinding.

섬유보강 고인성 시멘트 복합체 패널의 2축 전단 비선형 모델 (Nonlinear Biaxial Shear Model for Fiber-Reinforced Cementitious Composite Panels)

  • 조창근;김윤용
    • 한국전산구조공학회논문집
    • /
    • 제22권6호
    • /
    • pp.597-605
    • /
    • 2009
  • 본 연구에서는 철근 보강된 Engineered Cementitious Composite(ECC) 면내요소에 대한 2축응력 상태에서의 면내전단거동에 관한 예측 모델을 제시하였다. 기존의 철근콘크리트와 상이한 특성, 즉 ECC 요소의 복수미세균열 현상에 의한 높은 연성의 인장 거동, 일반 콘크리트에 비하여 연성적인 압축 연화 거동, 그리고 ECC 균열면에서의 전단전달 거동 특성 등을 모델에 반영하였다. 면내 순수전단거동에 대한 실험 및 해석결과를 통하여 개발된 R-ECC-MCFT 모델은 ECC 면내전단거동 예측에 효과적인 것으로 평가되었다. 또한 철근 보강된 ECC 면내요소는 철근콘크리트 면내요소에 비하여 최대전단강도 및 전단변형률이 증가하기 때문에 면내전단변형에서 높은 연성을 확보하는 것으로 평가되었다.

고무부품의 유한요소해석을 위한 재료시험 및 비선형 재료물성에 관한 연구 (Mechanical Testing and Nonlinear Material Properties for Finite Element Analysis of Rubber Components)

  • 김완두;김완수;김동진;우창수;이학주
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.848-859
    • /
    • 2004
  • Mechanical testing methods to determine the material constants for large deformation nonlinear finite element analysis were demonstrated for natural rubber. Uniaxial tension, uniaxial compression, equi-biaxial tension and pure shear tests of rubber specimens are performed to achieve the stress-strain curves. The stress-strain curves are obtained after between 5 and 10 cycles to consider the Mullins effect. Mooney and Ogden strain-energy density functions, which are typical form of the hyperelastic material, are determined and compared with each other. The material constants using only uniaxial tension data are about 20% higher than those obtained by any other test data set. The experimental equations of shear elastic modulus on the hardness and maximum strain are presented using multiple regression method. Large deformation finite element analysis of automotive transmission mount using different material constants is performed and the load-displacement curves are compared with experiments. The selection of material constant in large deformation finite element analysis depend on the strain level of component in service.

박막의 기계적 물성 측정을 위한 벌지 시험 시스템 개발: 전해 동 박의 탄성 계수 (Development of Bulge Testing System for Mechanical Properties Measurement of Thin Films : Elastic Modulus of Electrolytic Copper Film)

  • 김동일;허용학;김동진;기창두
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1807-1812
    • /
    • 2007
  • A bulge testing system was developed to measure mechanical properties of thin film materials. A bulge pressure test system for pressurizing the bulge window of the film and a micro out-of-plane ESPI(Electronic Speckle Pattern Interferometric) system for measuring deflection of the film were included in the testing system developed. For the out-of-plane ESPI system, whole field speckle fringe pattern, corresponding to the out-of-plane deflection of the bulged film, was 3-dimensionally visualized using 4-bucket phase shifting algorithm and least square phase unwrapping algorithm. The bulge pressure for loading and unloading was controlled at a constant rate. From the pressure-deflection curve measured by this testing system, ain-plane stress-strain curve could be determined. In this study, elastic modulus of an electrolytic copper film 18 ${\mu}m$ was determined. The modulus was calculated from determining the plain-strain biaxial elastic modulus at the respective unloading slopes of the stress-strain curve and for the Poisson's ratio of 0.34.

  • PDF

Analysis of post-failure response of sands using a critical state micropolar plasticity model

  • Manzari, Majid T.;Yonten, Karma
    • Interaction and multiscale mechanics
    • /
    • 제4권3호
    • /
    • pp.187-206
    • /
    • 2011
  • Accurate estimations of pre-failure deformations and post-failure responses of geostructures require that the simulation tool possesses at least three main ingredients: 1) a constitutive model that is able to describe the macroscopic stress-strain-strength behavior of soils subjected to complex stress/strain paths over a wide range of confining pressures and densities, 2) an embedded length scale that accounts for the intricate physical phenomena that occur at the grain size scale in the soil, and 3) a computational platform that allows the analysis to be carried out beyond the development of an initially "contained" failure zone in the soil. In this paper, a two-scale micropolar plasticity model will be used to incorporate all these ingredients. The model is implemented in a finite element platform that is based on the mechanics of micropolar continua. Appropriate finite elements are developed to couple displacement, micro-rotations, and pore-water pressure in form of $u_n-{\phi}_m$ and $u_n-p_m-{\phi}_m$ (n > m) elements for analysis of dry and saturated soils. Performance of the model is assessed in a biaxial compression test on a slightly heterogeneous specimen of sand. The role of micropolar component of the model on capturing the post-failure response of the soil is demonstrated.

Analytical Studies on Basic Creep of Concrete under Multiaxial Stresses

  • Kwon, Seung-Hee;Kim, Jin-Keun
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.465-472
    • /
    • 2003
  • Creep Poisson's ratio reported by previous experimental studies on multiaxial creep of concrete was controversial. The Poisson's ratio is very sensitive to small experimental error that is inevitably induced, and the sensitivity may cause the controversy. It is difficulty to find out the properties on multiaxial creep of concrete. Therefore, a new approach method to analyze the test results is needed to precisely understand the properties on multiaxial creep of concrete. In this study, microplane model is used as a new approach method in analyzing the multiaxial creep test data. The six data sets extracted from the literature are fitted from regression analysis. Double-power law as a model representing volumetric and deviatoric creep evolutions on microplane is used, and six parameters in volumetric and deviatoric compliances are determined on the assumption that the volumetric and deviatoric creep strains are linearly proportional to corresponding stresses. The optimum fits give very accurate description of the test data. The Poisson's ratio calculated from the optimum fits varies with time and does not depends on the stress states, namely, uniaxial, biaxial, and triaxial stress states. Regression analysis is also performed on the assumption that the Poisson's ratio remains constant with titre. The constant Poisson's ratio can be use in practice without serious error.

  • PDF

정밀금형 알루미늄 합금 주물에서의 잔류응력 측정에 관한 연구 (On the Measurement of Residual Stresses in Aluminum Alloy Parts Fabricated by Precision Metal Mold Casting)

  • 김채환;문수동;강신일
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.2087-2095
    • /
    • 1999
  • One of the main causes of unwanted dimensional changes in precision metal mold casting parts is excessive and irregular residual stresses induced by temperature gradients and plastic deformation in the solidifying shell. Residual stresses can also cause stress cracking, and lower the fatigue life and fracture strength of the casting parts. In the present study, aluminum alloy casting system with metal mold equipped with electrical heating elements and water cooling units was designed and the casting specimens were produced to quantify the effects of different cooling conditions on the development of residual stresses. The layer removal method was used to measure the biaxial residual stresses in casting specimens produced from the experiments. The experimental results agreed with Tien-Richmond's theoretical model for thermal stress development for the solidifying metal plate.

A new model for T-shaped combined footings part I: Optimal dimensioning

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.51-60
    • /
    • 2018
  • The foundations are classified into shallow and deep, which have important differences: in terms of geometry, the behavior of the soil, its structural functionality, and its constructive systems. The shallow foundations may be of various types according to their function; isolated footings, combined footings, strip footings, and slabs foundation. The isolated footings are of the type rectangular, square and circular. The combined footing may be rectangular, trapezoidal or T-shaped in plan. This paper presents a new model for T-shaped combined footings to obtain the most economical contact surface on the soil (optimal dimensioning) to support an axial load and moment in two directions to each column. The new model considers the soil real pressure, i.e., the pressure varies linearly. The classical model uses the technique of test and error, i.e., a dimension is proposed, and subsequently, the equation of the biaxial bending is used to obtain the stresses acting on each vertex of the T-shaped combined footing, which must meet the conditions following: The minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity that can withstand the soil. To illustrate the validity of the new model, numerical examples are presented to obtain the minimum area of the contact surface on the soil for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column.

이종재료의 진전 계면 균열에 대한 동적 광탄성 실험법 (Dynamic Photoelastic Experimental Method for Propagating Interfacial Crack of Bimaterials)

  • 신동철;황재석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.292-297
    • /
    • 2000
  • In this research, the dynamic photoelastic experimental hybrid method for bimaterial is introduced. Dynamic biaxial loading device is developed, its strain rate is 31.637 s-1 and its maximum impact load is 20 ton. Manufactured methods for model of the dynamic photoelastic experiment for bimaterial are suggested. They are bonding method(bonding material: AW106, PC-1) and molding method. In the bonding method, residual stress is not occurred in the manufactured bimaterial. Crack is propagated along the interface or sometimes deviated from the interface. While in the molding method, residual stress is occurred in the manufactured bimaterial. Crack is always deviated from the interface and propagated in the epoxy region(softer materila). In order to propagate with constant velocity along the interface of bimaterial with arbitrary stiffer material, edge crack should be located along the interface of the acute angle side of the softer material in the bimaterial.

  • PDF

The behavior of lightweight aggregate concrete filled steel tube columns under eccentric loading

  • Elzien, Abdelgadir;Ji, Bohai;Fu, Zhongqiu;Hu, Zhengqing
    • Steel and Composite Structures
    • /
    • 제11권6호
    • /
    • pp.469-488
    • /
    • 2011
  • This paper consists of two parts; the first part describes the laboratory work concerning the behavior of lightweight aggregate concrete filled steel tubes (LACFT). Based on eccentricity tests, fifty-four specimens with different slenderness ratios (L/D= 3, 7, and 14) were tested. The main parameters varied in the test are: load eccentricity; steel ratio; and slenderness ratio. The standard load-strain curves of LACFT columns under eccentric loading were summarized and significant parameters affecting LACFT column's bearing capacity, failure mechanism and failure mode such as confinement effect and bond strength were all studied and analyzed through the comparison with predicted strength of concrete filled steel tube columns (CFT) using the existing codes such as AISC-LRFD (1999), CHN DBJ 13-51-2003 (2003) and CHN CECS 28:90 (1990). The second part of this paper presents the results of parametric study and introduces a practical and accurate method for determination of the maximum compressive strength of confined concrete core ($f_{max}$), In addition to, the study of the effect of aspect-ratio and length-width ratio on the yield stress of steel tubes ( $f_{sy}$) under biaxial state of stress in CFT columns and the effect of these two factors on the ultimate load carrying capacity of axially loaded CFT/LACFT columns.