• Title/Summary/Keyword: Biasing Field

Search Result 43, Processing Time 0.026 seconds

Effect of Biasing Magnetic Fields on the Patch-type Magnetostrictive Transducers (패치형 자왜 초음파 변환기 성능에 대한 바이어스 자기장의 영향)

  • Lee, Ho-Cheol;Kim, Hee-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1177-1183
    • /
    • 2009
  • The effects of biasing magnetic fields on the performances of magnetostrictive ultrasonic transducers are investigated. The transducers are patch-type ones which are used for SHM of plate structures. Various kinds of configurations of biasing magnets are covered experimentally. It is experimentally verified that how the biasing magnetic field deploys is the most significant factors on maximizing the transducer output. From the magnetostriction curve of nickel, it is concluded qualitatively that it is not the absolute values of biasing magnetic field but the slope of magnetostriction curve to be taken account of.

Structural and Field-emissive Properties of Carbon Nanotubes Produced by ICP-CVD: Effects of Substrate-Biasing (ICP-CVD 방법으로 성장된 탄소 나노튜브의 구조적 특성 및 전계방출 특성: 기판전압 인가 효과)

  • Park, C.K.;Kim, J.P.;Yun, S.J.;Park, J.S.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.132-138
    • /
    • 2007
  • Carbon nanotubes (CNTs) arc grown on Ni catalysts employing an inductively-coupled plasma chemical vapor deposition (ICP-CVD) method. The structural and field-emissive properties of the CNTs grown are characterized in terms of the substrate-bias applied. Characterization using the various techniques, such as field-omission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Auger spectroscopy (AES), and Raman spectroscopy, shows that the structural properties of the CNTs, including their physical dimensions and crystal qualities, as well as the nature of vertical growth, are strongly dependent upon the application of substrate bias during CNT growth. It is for the first time observed that the provailing growth mechanism of CNTs, which is either due to tip-driven growth or based-on-catalyst growth, may be influenced by substrate biasing. It is also seen that negatively substrate-biasing would promote the vertical-alignment of the CNTs grown, compared to positively substrate-biasing. However, the CNTs grown under the positively-biased condition display a higher electron-emission capability than those grown under the negatively-biased condition or without any bias applied.

Structural properties of carbon nanotubes: The effect of substrate-biasing (기판 바이어스에 따른 탄소 나노튜브의 구조적 물성)

  • Park, Chang-Kyun;Yun, Sung-Jun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.36-37
    • /
    • 2006
  • Both negative and positive substrate bias effects on the structural properties and field-emission characteristics are investigated. carbon nanotubes (CNTs) are grown on Ni catalysts employing an inductively-coupled plasma chemical vapor deposition (ICP-CVD) method. Characterization using various techniques, such as field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Auger spectroscopy (AES), and Raman spectroscopy, shows that the physical dimension as well as the crystal quality of CNTs grown can be changed and controlled by the application of substrate bias during CNT growth. It is for the first time observed that the prevailing growth mechanism of CNTs, which is either due to tip-driven growth or based-on-catalyst growth, may be influenced by substrate biasing. It is also seen that negative biasing would be more effectively role in the vertical-alignment of CNTs compared to positive biasing. However, the CNTs grown under the positively bias condition display much better electron emission capabilities than those grown under negative bias or without bias. The reasons for all the measured data regarding the structural properties of CNTs are discussed to confirm the correlation with the observed field-emissive properties.

  • PDF

Microscopic Domain Structures in NiO Exchange-coupled Films

  • Hwang, D.G.;Kim, J.K.;Kim, S.W.;Lee, S.S.;Dreyer, M.;Gomez, R.D.
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.94-97
    • /
    • 2002
  • The dependence on nickel oxide thickness and a ferromagnetic layer thickness in unidirectional and isotropic exchange-coupled NiO/NiFe(Fe) bilayer films was investigated by magnetic force microscopy to better understand the relation between magnetic domain structure and exchange biasing at microscopic length scales. As the NiO thickness increased, the domain structure of unidirectional biased films formed smaller and more complex in-plane domains. By contrast, for the isotropically coupled films, large domains generally formed with increasing NiO thickness including a cross type domain with out-of plane magnetization orientation. The density of the cross domain is proportional to exchange biasing field, and the fact that the domain mainly originated from the strongest exchange coupled region was confirmed by imaging in an applied external field during a magnetization cycle.

Development of a new concept magnetostrictive transducer for damage detection of plate structures (평판 상의 결함진단을 위한 신개념 자기변형 트랜스듀서의 개발)

  • Lee, Hyun-Su;Lee, Ho-Cheol;Lee, Ju-Seung;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.566-568
    • /
    • 2008
  • An E-OPMT(Electronically-controllable OPMT) was developed as an alternative of OPMT which could adjust the direction of the generated guided waves in a plate manually. The key idea of controlling the wave direction electronically is based on a few sets of axisymmetric figure-of-eight coils and the magnet which is located for making static omni-directionally biasing magnetic field over the patch. However, in order to explain wave phenomenon generated by this transducer, a new approach is required because there are various combinations between static biasing magnetic field and dynamic actuating magnetic field on the patch, not similar to OPMT. In this paper, the experiments were performed to understand characteristics of E-OPMT and the new theoretical analysis was set up for explaining the result.

  • PDF

A Study on Performance Prediction for a Magnetostrictive Ultrasonic Transducer According to Arrangement of Permanent Magnets for Biasing (바이어스 자기장용 영구자석 배치에 따른 자왜 초음파 변환기 성능 예측에 관한 연구)

  • Lee, Ho-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1200-1209
    • /
    • 2010
  • The main subject of this paper is to develop analytic method with which output power or sensitivity variations of a magnetostrictive ultrasonic transducer can be estimated with no aid of experiments. After the bias magnetic field deployed over the patch is calculated using finite element analysis for magnetostatics, the representative value is extracted by averaging these field values. The operating point on the characteristic curve for magnetostriction is identified by this value and then the output performance is calculated from it. It is verified that the results from this simple model match well with those of its experimental version and some limits of this modeling technique are also considered.

Local Laser Annealing in Exchange-Biased Films with Out-of-Plane and In-Plane Magnetic Anisotropy

  • Choi, S.D.;Kim, S.W.;Jin, D.H.;Yun, D.K.;Lee, M.S.;Ahn, J.H.;Joo, H.W.;Lee, K.A.;Lee, S.S.;Hwang, D.G.
    • Journal of Magnetics
    • /
    • v.11 no.2
    • /
    • pp.66-69
    • /
    • 2006
  • Local magnetization reversal in the exchange-biased NiFe/FeMn and $[Pd/Co]_5/FeMn$ multilayers with in-plane and out-of-plane magnetic anisotropy was achieved by using laser annealing. The local annealed NiFe/FeMn film under the opposite magnetic field shows a magnetoresistance (MR) curve having two symmetric peaks at the positive and negative exchange biasing field (${\pm}H_{ex}$). The intensity of the nucleated MR peak rises as the exposed area extends during the laser annealing process, and the peak disappears under the reverse magnetic field. In the case of [Pd/Co]/FeMn films, the local magnetization reversal increased gradually as the laser power increases. The locally reversed magnetization was restored under the opposite magnetic field.

LNA Design Uses Active and Passive Biasing Circuit to Achieve Simultaneous Low Input VSWR and Low Noise (낮은 입력 정재파비와 잡음을 갖는 수동 및 능동 바이어스를 사용한 저잡음증폭기에 관한 연구)

  • Jeon, Joong-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1263-1268
    • /
    • 2008
  • In this paper, the low noise power amplifier for GaAs FET ATF-10136 is designed and fabricated with active bias circuit and self bias circuit. To supply most suitable voltage and current, active bias circuit is designed. Active biasing offers the advantage that variations in the pinch-off voltage($V_p$) and saturated drain current($I_{DSS}$) will not necessitate a change in either the source or drain resistor value for a given bias condition. The active bias network automatically sets a gate-source voltage($V_{gs}$) for the desired drain voltage and drain current. Using resistive decoupling circuits, a signal at low frequency is dissipated by a resistor. This design method increases the stability of the LNA, suitable for input stage matching and gate source bias. The LNA is fabricated on FR-4 substrate with active and self bias circuit, and integrated in aluminum housing. As a results, the characteristics of the active and self bias circuit LNA implemented more than 13 dB and 14 dB in gain, lower than 1 dB and 1.1 dB in noise figure, 1.7 and 1.8 input VSWR at normalized frequency $1.4{\sim}1.6$, respectively.

Vibrational Characteristics of Magnetostrictive Materials for a Vibration Assisted Cutting Device (진동절삭기 구성을 위한 자기변형 재료의 진동 특성 규명)

  • Lee, Ho-Cheol;Kim, Gi-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1214-1220
    • /
    • 2012
  • Vibration assisted cutting (VAC) is one of the promising methods for precision machining, which has been normally equipped with piezoelectric materials. In this paper, a feasibility of applying magnetostrictive materials to VAC as a cutting device instead of piezoelectric materials was studied. For this, the vibrational characteristics of a magnetostrictive material was investigated with respect to a coil design, a preload, and the effects of a biasing and an exciting magnetic fields. The output strain of a magnetostrictive material is restricted due to an increasing inductive impedance as the exciting frequency increases and the heat of coil, etc. Through the experimental results, it was found that the biasing and the exciting magnetic field affected the output performance significantly but not the preload. In conclusion, the magnetostrictive material could be used only in the low frequency range but not a good candidate for high frequency actuating application.