• Title/Summary/Keyword: Bias-Correction

Search Result 268, Processing Time 0.033 seconds

Architecture Design for Maritime Centimeter-Level GNSS Augmentation Service and Initial Experimental Results on Testbed Network

  • Kim, Gimin;Jeon, TaeHyeong;Song, Jaeyoung;Park, Sul Gee;Park, Sang Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • In this paper, we overview the system development status of the national maritime precise point positioning-real-time kinematic (PPP-RTK) service in Korea, also known as the Precise POsitioning and INTegrity monitoring (POINT) system. The development of the POINT service began in 2020, and the open service is scheduled to start in 2025. The architecture of the POINT system is composed of three provider-side facilities-a reference station, monitoring station, and central control station-and one user-side receiver platform. Here, we propose the detailed functionality of each component considering unidirectional broadcasting of augmentation data. To meet the centimeter-level user positioning accuracy in maritime coverage, new reference stations were installed. Each reference station operates with a dual receiver and dual antenna to reduce the risk of malfunctioning, which can deteriorate the availability of the POINT service. The initial experimental results of a testbed from corrections generated from the testbed network, including newly installed reference stations, are presented. The results show that the horizontal and vertical accuracies satisfy 2.63 cm and 5.77 cm, respectively. For the purpose of (near) real-time broadcasting of POINT correction data, we designed a correction message format including satellite orbit, satellite clock, satellite signal bias, ionospheric delay, tropospheric delay, and coordinate transformation parameters. The (near) real-time experimental setup utilizing (near) real-time processing of testbed network data and the designed message format are proposed for future testing and verification of the system.

Error Characteristic Analysis and Correction Technique Study for One-month Temperature Forecast Data (1개월 기온 예측자료의 오차 특성 분석 및 보정 기법 연구)

  • Yongseok Kim;Jina Hur;Eung-Sup Kim;Kyo-Moon Shim;Sera Jo;Min-Gu Kang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.368-375
    • /
    • 2023
  • In this study, we examined the error characteristic and bias correction method for one-month temperature forecast data produced through joint development between the Rural Development Administration and the H ong Kong University of Science and Technology. For this purpose, hindcast data from 2013 to 2021, weather observation data, and various environmental information were collected and error characteristics under various environmental conditions were analyzed. In the case of maximum and minimum temperatures, the higher the elevation and latitude, the larger the forecast error. On average, the RMSE of the forecast data corrected by the linear regression model and the XGBoost decreased by 0.203, 0.438 (maximum temperature) and 0.069, 0.390 (minimum temperature), respectively, compared to the uncorrected forecast data. Overall, XGBoost showed better error improvement than the linear regression model. Through this study, it was found that errors in prediction data are affected by topographical conditions, and that machine learning methods such as XGBoost can effectively improve errors by considering various environmental factors.

ASSESSING CALIBRATION ROBUSTNESS FOR INTACT FRUIT

  • Guthrie, John A.;Walsh, Kerry B.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1154-1154
    • /
    • 2001
  • Near infra-red (NIR) spectroscopy has been used for the non-invasive assessment of intact fruit for eating quality attributes such as total soluble solids (TSS) content. However, little information is available in the literature with respect to the robustness of such calibration models validated against independent populations (however, see Peiris et al. 1998 and Guthrie et al. 1998). Many studies report ‘prediction’ statistics in which the calibration and prediction sets are subsets of the same population (e. g. a three year calibration validated against a set from the same population, Peiris et al. 1998; calibration and validation subsets of the same initial population, Guthrie and Walsh 1997 and McGlone and Kawano 1998). In this study, a calibration was developed across 84 melon fruit (R$^2$= 0.86$^{\circ}$Brix, SECV = 0.38$^{\circ}$Brix), which predicted well on fruit excluded from the calibration set but taken from the same population (n = 24, SEP = 0.38$^{\circ}$Brix with 0.1$^{\circ}$Brix bias), relative to an independent group (same variety and farm but different harvest date) (n = 24, SEP= 0.66$^{\circ}$ Brix with 0.1$^{\circ}$Brix bias). Prediction on a different variety, different growing district and time was worse (n = 24, SEP = 1.2$^{\circ}$Brix with 0.9$^{\circ}$Brix bias). Using an ‘in-line’ unit based on a silicon diode array spectrometer, as described in Walsh et al. (2000), we collected spectra from fruit populations covering different varieties, growing districts and time. The calibration procedure was optimized in terms of spectral window, derivative function and scatter correction. Performance of a calibration across new populations of fruit (different varieties, growing districts and harvest date) is reported. Various calibration sample selection techniques (primarily based on Mahalanobis distances), were trialled to structure the calibration population to improve robustness of prediction on independent sets. Optimization of calibration population structure (using the ISI protocols of neighbourhood and global distances) resulted in the elimination of over 50% of the initial data set. The use of the ISI Local Calibration routine was also investigated.

  • PDF

GCMs-Driven Snow Depth and Hydrological Simulation for 2018 Pyeongchang Winter Olympics (기후모형(GCMs)에 기반한 2018년 평창 동계올림픽 적설량 및 수문모의)

  • Kim, Jung Jin;Ryu, Jae Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.3
    • /
    • pp.229-243
    • /
    • 2013
  • Hydrological simulation Program-Fortran (HSPF) model was used to simulate streamflow and snow depth at Pyengchang watershed. The selected Global Climate Models (GCMs) provided by the Coupled Model Intercomparision Project Phase 3 (CMIP3) were utilized to evaluate streamflow and snow depth driven by future climate scenarios, including A1, A1B, and B1. Bias-correlation and temporal downscaling processes have been performed to minimize systematic errors between GCMs and HSPF. Based on simulated monthly streamflow and snow depth after calibration, the results indicate that HSPF performs well. The correlation coefficient between the observed and simulated monthly streamflow is 0.94. Snow depth simulations also show high correlation coefficient, which is 0.91. The results indicate that snow depth in 2018 at Pyongchang winter olympic venues will decrease by 17.62%, 9.38%, and 7.25% in January, February, and March respectively, based on streamflow realizations induced by all GCMs ensembles.

Enhancement of Land Load Estimation Method in TMDLs for Considering of Climate Change Scenarios (기후변화를 고려하기 위한 오염총량관리제 토지계 오염부하량 산정 방식 개선)

  • Ryu, Jichul;Park, Yoon Sik;Han, Mideok;Ahn, Ki Hong;Kum, Donghyuk;Lim, Kyoung Jae;Park, Bae Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.212-219
    • /
    • 2014
  • In this study, a land pollutant load calculation method in TMDLs was improved to consider climate change scenarios. In order to evaluate the new method, future change in rainfall patterns was predicted by using SRES A1B climate change scenarios and then post-processing methods such as change factor (CF) and quantile mapping (QM) were applied to correct the bias between the predicted and the observed rainfall patterns. Also, future land pollutant loads were estimated by using both the bias corrected rainfall patterns and the enhanced method. For the results of bias correction, both methods (CF and QM) predicted the temporal trend of the past rainfall patterns and QM method showed future daily average precipitation in the range of 1.1~7.5 mm and CF showed it in the range of 1.3~6.8 mm from 2014 to 2100. Also, in the result of the estimation of future land pollutant loads using the enhanced method (2020, 2040, 2100), TN loads were in the range of 4316.6~6138.6 kg/day and TP loads were in the range of 457.0~716.5 kg/day. However, each result of TN and TP loads in 2020, 2040, 2100 was the same with the original method. The enhanced method in this study will be useful to predict land pollutant loads under the influence of climate change because it can reflect future change in rainfall patterns. Also, it is expected that the results of this study are used as a base data of TMDLs in case of applying for climate change scenarios.

Mean Field Bias Correction of the Very-Short-Range-Forecast Rainfall using the Kalman Filter (Kalman Filter를 이용한 초단기 예측강우의 편의 보정)

  • Yoo, Chul-Sang;Kim, Jung-Ho;Chung, Jae-Hak;Yang, Dong-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.17-28
    • /
    • 2011
  • This study applied the Kalman Filter for real-time forecasting the G/R (ground rain gauge rainfall/radar rainfall) ratio to correct the mean field bias of the very-short-range-forecast (VSRF) rainfall. The MAPLE-forecasted rainfall was used as the VSRF rainfall, also the methodology for deciding the G/R ratio was improved by evaluating the change of G/R ratio characteristics depending on the threshold and accumulation time. This analysis was done for the inland, mountain, and coastal regions, separately, for their comparison. As the results, more stable G/R ratio could be estimated by applying the threshold and accumulation time, whose forecasting accuracy could also be secured. The accuracy of the corrected rainfall forecasting by the forecasted G/R ratio was the best in the inland region but the worst in the coastal region.

Attitude Estimation of Unmanned Vehicles Using Unscented Kalman Filter (무향 칼만 필터를 이용한 무인 운송체의 자세 추정)

  • Song, Gyeong-Sub;Ko, Nak-Yong;Choi, Hyun-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.265-274
    • /
    • 2019
  • The paper describes an application of unscented Kalman filter(UKF) for attitude estimation of an unmanned vehicle(UV), which is equipped with a low-cost attitude heading reference system (AHRS). The roll, pitch and yaw required at the correction stage of the UKF are calculated from the measurements of acceleration and geomagnetic field. The roll and pitch are attributed to the measurement of acceleration, while yaw is calculated from the geomagnetic field measurement. Since the measurement of geomagnetic field is vulnerable to distortion by hard-iron and soft-iron effects, the calculated yaw has more uncertainty than the calculated roll and pitch. To reduce the uncertainty of geomagnetic field measurement, the proposed method estimates bias in the geomagnetic field measurement and compensates for the bias for more accurate calculation of yaw. The proposed method is verified through navigation experiments of a UV in a test pool. The results show that the proposed method yields more accurate attitude estimation; thus, it results more accurate location estimation.

Global Ocean Data Assimilation and Prediction System 2 in KMA: Operational System and Improvements (기상청 전지구 해양자료동화시스템 2(GODAPS2): 운영체계 및 개선사항)

  • Hyeong-Sik Park;Johan Lee;Sang-Min Lee;Seung-On Hwang;Kyung-On Boo
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.423-440
    • /
    • 2023
  • The updated version of Global Ocean Data Assimilation and Prediction System (GODAPS) in the NIMS/KMA (National Institute of Meteorological Sciences/Korea Meteorological Administration), which has been in operation since December 2021, is being introduced. This technical note on GODAPS2 describes main progress and updates to the previous version of GODAPS, a software tool for the operating system, and its improvements. GODAPS2 is based on Forecasting Ocean Assimilation Model (FOAM) vn14.1, instead of previous version, FOAM vn13. The southern limit of the model domain has been extended from 77°S to 85°S, allowing the modelling of the circulation under ice shelves in Antarctica. The adoption of non-linear free surface and variable volume layers, the update of vertical mixing parameterization, and the adjustment of isopycnal diffusion coefficient for the ocean model decrease the model biases. For the sea-ice model, four vertical ice layers and an additional snow layer on top of the ice layers are being used instead of previous single ice and snow layers. The changes for data assimilation include the updated treatment for background error covariance, a newly added bias scheme combined with observation bias, the application of a new bias correction for sea level anomaly, an extension of the assimilation window from 1 day to 2 days, and separate assimilations for ocean and sea-ice. For comparison, we present the difference between GODAPS and GODAPS2. The verification results show that GODAPS2 yields an overall improved simulation compared to GODAPS.

Validation of Sea Surface Wind Speeds from Satellite Altimeters and Relation to Sea State Bias - Focus on Wind Measurements at Ieodo, Marado, Oeyeondo Stations (인공위성 고도계 해상풍 검증과 해상상태편차와의 관련성 - 이어도, 마라도, 외연도 해상풍 관측치를 중심으로 -)

  • Choi, Do-Young;Woo, Hye-Jin;Park, Kyung-Ae;Byun, Do-Seong;Lee, Eunil
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.139-153
    • /
    • 2018
  • The sea surface wind field has long been obtained from satellite scatterometers or passive microwave radiometers. However, the importance of satellite altimeter-derived wind speed has seldom been addressed because of the outstanding capability of the scatterometers. Satellite altimeter requires the accurate wind speed data, measured simultaneously with sea surface height observations, to enhance the accuracy of sea surface height through the correction of sea state bias. This study validates the wind speeds from the satellite altimeters (GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) and analyzes characteristics of errors. In total, 1504 matchup points were produced using the wind speed data of Ieodo Ocean Research Station (IORS) and of Korea Meteorological Administration (KMA) buoys at Marado and Oeyeondo stations for 10 years from December 2007 to May 2016. The altimeter wind speed showed a root mean square error (RMSE) of about $1.59m\;s^{-1}$ and a negative bias of $-0.35m\;s^{-1}$ with respect to the in-situ wind speed. Altimeter wind speeds showed characteristic biases that they were higher (lower) than in-situ wind speeds at low (high) wind speed ranges. Some tendency was found that the difference between the maximum and minimum value gradually increased with distance from the buoy stations. For the improvement of the accuracy of altimeter wind speed, an equation for correction was derived based on the characteristics of errors. In addition, the significance of altimeter wind speed on the estimation of sea surface height was addressed by presenting the effect of the corrected wind speeds on the sea state bias values of Jason-1.

Improving usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: III. Correction for Advection Effect on Determination of Daily Maximum Temperature Over Sloped Surfaces (기상청 동네예보의 영농활용도 증진을 위한 방안: III. 사면 일 최고기온 결정에 미치는 이류효과 보정)

  • Kim, Soo-Ock;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2014
  • The effect of solar irradiance has been used to estimate daily maximum temperature, which make it possible to reduce the error inherent to lapse-rate based elevation difference correction in mountainous terrain. Still, recent observations indicated that the effect of solar radiation would need correction for estimation of daily maximum temperature. It was attempted to examine what would cause the variability of solar irradiance effect in determination of daily maximum temperature under natural field conditions and to suggest improved methods for estimation of the temperature distribution over mountainous regions. Temperature at 1500 and the wind speed for 1100 to 1500 were obtained at 10 validation sites with various topographical features including slope and aspect within a mountainous $50km^2$ catchment for 2012-2013. Lapse-rate corrected temperature estimates on clear days were compared with these observations, which would represent the differential irradiance effect among sloped surfaces. Results indicated a negative correlation between the mean wind speed and the estimation error. A simple scheme was derived from relationship between wind speed and estimation error for daily temperature to correct the effect of solar radiation. This scheme was incorporated into an existing model to estimate daily maximum temperature based on the effect of solar radiation. At 10 validation sites on clear days, estimates of 1500 LST temperature with and without the correction scheme were compared. It was found that a substantial improvement was achieved when the correction scheme was applied in terms of bias correction as well as error size reduction at all sites.