• Title/Summary/Keyword: BiCGSTAB

Search Result 22, Processing Time 0.028 seconds

A Study on Multi-Block Technique by Bi-CGSTAB Solver (Bi-CGSTAB 해법에 의한 복합격자망 해석방법에 관한 연구)

  • Bae, Jin-Hyo;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2611-2625
    • /
    • 1996
  • A numerical method on multi-block technique by Bi-CGSTAB(Bi-Conjugate Gradient STABilized) solver has been proposed. The present multi-block technique can reduce the numerical manipulation greatly because the common regions at the interface of each block are not necessary. In order to test the computational performance of present multi-block technique, the flow characteristics in a T type duct system and a N type duct system have been investigated by three kinds of methods such as the single-block method, the previous multi-block technique and the multi-block technique with Bi-CGSTAB solver. The results indicated that the required CPU time by present multi block technique was shorter than that of other two numerical methods and the convergency history was shown very stable at the present multi-block technique.

Computational Complexity of BiCGstab(l) in Multi-Level Fast Multipole Method(MLFMM) and Efficient Choice of l (MLFMM(Multi-Level Fast Multipole Method) 방법에 적용된 BiCGstab(l)반복법의 l값에 따른 연산량 분석 및 효율적인 l값)

  • Lee, Hyunsoo;Rim, Jae-Won;Koh, Il-Suek;Seo, Seung-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.167-170
    • /
    • 2018
  • The method of moments(MoM) is one of the most popular integral-equation-based full-wave simulation methods, and the multi-level fast multipole method(MLFMM) algorithm can be used for its efficient calculation. When calculating the surface current on the large scatterer in the MoM or MLFMM, iterative methods for the final matrix inversion are used. Among them, BiCGstab(l) has been widely adopted due to its good convergence rate. The number of iterations can be reduced when l becomes larger, but the number of operations per iteration is increased. Herein, we analyze the computational complexity of BiCGstab(l) in the MLFMM method and propose an optimum choice of l.

Efficient Iterative Solvers for Modified Mild Slope Equation (수정완경사방정식을 위한 반복기법의 효율성 비교)

  • Yoon, Jong-Tae;Park, Seung-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.61-66
    • /
    • 2006
  • Two iterative solvers are applied to solve the modified mild slope equation. The elliptic formulation of the governing equation is selected for numerical treatment because it is partly suited for complex wave fields, like those encountered inside harbors. The requirement that the computational model should be capable of dealing with a large problem domain is addressed by implementing and testing two iterative solvers, which are based on the Stabilized Bi-Conjugate Gradient Method (BiCGSTAB) and Generalized Conjugate Gradient Method (GCGM). The characteristics of the solvers are compared, using the results for Berkhoff's shoal test, used widely as a benchmark in coastal modeling. It is shown that the GCGM algorithm has a better convergence rate than BiCGSTAB, and preconditioning of these algorithms gives more than half a reduction of computational cost.

COMPARISON OF NUMERICAL METHODS (BI-CGSTAB, OS, MG) FOR THE 2D BLACK-SCHOLES EQUATION

  • Jeong, Darae;Kim, Sungki;Choi, Yongho;Hwang, Hyeongseok;Kim, Junseok
    • The Pure and Applied Mathematics
    • /
    • v.21 no.2
    • /
    • pp.129-139
    • /
    • 2014
  • In this paper, we present a detailed comparison of the performance of the numerical solvers such as the biconjugate gradient stabilized, operator splitting, and multigrid methods for solving the two-dimensional Black-Scholes equation. The equation is discretized by the finite difference method. The computational results demonstrate that the operator splitting method is fastest among these solvers with the same level of accuracy.

Steady and Unsteady flows with Pressure-based Unstructured-grid Navier-Stokes Solver PUNS (비정렬격자 압력기준 유동해석기법을 이용한 정상 및 비정상 유동해석)

  • Kim Jongtae
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.98-105
    • /
    • 1999
  • The Pressure-based Unstructured-grid Navier-Stokes Solver PUNS-2/3D for incompressible steady and unsteady viscous flows has been developed. It is based on nonstaggered cell-centered finite volume method. Second-order upwind scheme with least-square reconstruction is used for convective fluxes. The SIMPLE method is implemented to couple the pressure and velocity fields. And the time derivatives in the momentum equations are discretised using a second-order Euler backward-differencing scheme. The discretised linear equations are solved by the preconditioned Biconjugate Gradient Stabilized method(Bi-CGSTAB). The developed solver is applied to validation problems using hybrid meshes.

  • PDF

Efficient 3D Modeling of CSEM Data (인공송신원 전자탐사 자료의 효율적인 3차원 모델링)

  • Jeong, Yong-Hyeon;Son, Jeong-Sul;Lee, Tae-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.75-80
    • /
    • 2009
  • Despite its flexibility to complex geometry, three-dimensional (3D) electromagnetic(EM) modeling schemes using finite element method (FEM) have been faced to practical limitation due to the resulting large system of equations to be solved. An efficient 3D FEM modeling scheme has been developed, which can adopt either direct or iterative solver depending on the problems. The direct solver PARDISO can reduce the computing time remarkably by incorporating parallel computing on multi-core processor systems, which is appropriate for single frequency multi-source configurations. When limited memory, the iterative solver BiCGSTAB(1) can provide fast and stable convergence. Efficient 3D simulations can be performed by choosing an optimum solver depending on the computing environment and the problems to be solved. This modeling includes various types of controlled-sources and can be exploited as an efficient engine for 3D inversion.

  • PDF

BCG-LIKE METHODS FOR SOLVING NONSYMMETRIC LINEAR SYSTEMS

  • Yun, Jae Heon;Joo, Myung Suk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.8 no.1
    • /
    • pp.55-69
    • /
    • 1995
  • This paper proposes two variants of BCG-like method for solving nonsymmetric linear sytems. It is shown that these new algorithms converge faster and more smoothly than the existing BCG and BiCGSTAB algorithms for problems tested in this paper.

  • PDF

Comparison of different iterative schemes for ISPH based on Rankine source solution

  • Zheng, Xing;Ma, Qing-wei;Duan, Wen-yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.390-403
    • /
    • 2017
  • Smoothed Particle Hydrodynamics (SPH) method has a good adaptability for the simulation of free surface flow problems. There are two forms of SPH. One is weak compressible SPH and the other one is incompressible SPH (ISPH). Compared with the former one, ISPH method performs better in many cases. ISPH based on Rankine source solution can perform better than traditional ISPH, as it can use larger stepping length by avoiding the second order derivative in pressure Poisson equation. However, ISPH_R method needs to solve the sparse linear matrix for pressure Poisson equation, which is one of the most expensive parts during one time stepping calculation. Iterative methods are normally used for solving Poisson equation with large particle numbers. However, there are many iterative methods available and the question for using which one is still open. In this paper, three iterative methods, CGS, Bi-CGstab and GMRES are compared, which are suitable and typical for large unsymmetrical sparse matrix solutions. According to the numerical tests on different cases, still water test, dam breaking, violent tank sloshing, solitary wave slamming, the GMRES method is more efficient than CGS and Bi-CGstab for ISPH method.

Combination of Preconditioned Krylov Subspace Methods and Multi-grid Method for Convergence Acceleration of the incompressible Navier-Stokes Equations (비압축성 Navier-Stokes 방정식의 수렴 가속을 위한 예조건화 Krylov 부공간법과 다중 격자법의 결합)

  • Maeng Joo Sung;Choi IL Kon;Lim Youn Woo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.106-112
    • /
    • 1999
  • In this article, combination of the FAS-FMG multi-grid method and the Krylov subspace method was presented in solving two dimensional driven-cavity flows. Three algorithms of the Krylov subspace method, CG, CGSTAB(Bi-CG Stabilized) and GMRES method were tested with MILU preconditioner. As a smoother of the pressure correction equation, the MILU-CG is recommended rather than MILU-GMRES(k) or MILU-CGSTAB, since the MILU-GMRES(k) preconditioner has too much computation on the coarse grid compared to the MILU-CG one. As for the momentum equation, relatively cheap smoother like SIP solver may be sufficient.

  • PDF

PARALLEL BLOCK ILU PRECONDITIONERS FOR A BLOCK-TRIDIAGONAL M-MATRIX

  • Yun, Jae-Heon;Kim, Sang-Wook
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.209-227
    • /
    • 1999
  • We propose new parallel block ILU (Incomplete LU) factorization preconditioners for a nonsymmetric block-tridiagonal M-matrix. Theoretial properties of these block preconditioners are studied to see the convergence rate of the preconditioned iterative methods, Lastly, numerical results of the right preconditioned GMRES and BiCGSTAB methods using the block ILU preconditioners are compared with those of these two iterative methods using a standard ILU preconditioner to see the effectiveness of the block ILU preconditioners.

  • PDF