• Title/Summary/Keyword: Bi2212

Search Result 198, Processing Time 0.022 seconds

High field HTS insert coils : Status and key technical issue

  • Schwartz, Justin
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.22-22
    • /
    • 2000
  • The discoveries of high temperature superconductors received great attention due to their high critical temperatures. These materials also exhibit extremely high critical magnetic fields and high critical current density at low temperature, high magnetic field. Thus, they are the most promising materials for superconducting magnets above 20 T. In this talk, progress in the development of HTS materials and insert coils at the National High Magnetic Field Laboratory will be reviewed. In 1999, a Bi-2212 stack of double pancakes generated 3 T in a 19 T background field. These results will be reviewed in terms of implications for future systems. Individual double pancakes of Bi-2223 have also been tested and their performance will also be discused. The present goal of a 57 system will be presented and the key technical requirements for larger, higher field systems will be addressed. It will be shown that in addition to increased critical current density, improved mechanical performance (stain resistanced) is necessary for high field systems. Furthemore, improvements in the conductor n-value will improve prospects for operational systems.

  • PDF

Extraction of the Self-Energy from Simulated ARPES Data for High $T_c$ Superconductors (고온초전도체 ARPES 시뮬레이션에서 자체에너지 추출)

  • Bok, Jin-Mo;Yun, Jae-Hyun;Choi, Han-Yong
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.69-73
    • /
    • 2009
  • For extraction of the self-energy from the angle resolved photoemission spectroscopy(ARPES) experiments for the cuprate superconductors, the momentum distribution curve(MDC) analysis is commonly used. There are two requirements for this method to work: the self-energy is momentum independent and the bare electron dispersion is known. Assuming that the first condition is satisfied in the cuprates, we checked the effects of the bare dispersion on the extracted self-energy. For this, we first generated the ARPES intensity using the tight-binding band of the B2212 by solving the Eliashberg equation. We then extracted the self-energy from the theoretically generated ARPES intensity using the linear and quadratic dispersions. By choosing the bare dispersion such that the Kramer-Kronig relation is best satisfied between the real and imaginary parts of the extracted self-energy, we confirmed that the quadratic dispersion is better for the bare electron band for Bi2212. The self-energy can be reasonably extracted from the ARPES experiments using the MDC analysis.

  • PDF

The Effect of Relatively Low Lead Contents on the Phase Formation and Jc values of Bi-2223/Ag Tapes

  • Jiang, C.H.;Yoo, J.M.;Ko, J.W.;Kim, H.D.;Chung, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.17-20
    • /
    • 2002
  • The effects of relatively low lead content (0.2~0.3) on the 2223 phase formation and transport property of Bi-2223/Ag tapes have been investigated. The results show that lead contents have great impact on the phase assemblage of precursors, subsequently, on the phase formation and transport property of silver sheathed BSCCO-2223 tapes. Powders containing Pb=0.25 and Pb=0.3 resulted in the nearly identical $J_c$ values in fully processed tapes, but leaded to significant difference on the phase formation process. For the case of Pb=0.2, both low conversion fraction of 2212 to 2223 and low $J_c$ value were obtained in final reacted tape, which was probably due to lack of enough liquid phase to facilitate the phase transformation.

  • PDF

A Study on Transient Numerical Simulation on Heat Transfer Characteristics in the Resistive SFCL

  • Kim Chul-Ho;Lee Kee-Man;Ryu Kyung-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.14-19
    • /
    • 2005
  • A transient numerical simulation was conducted to have variation of temperature on an element of resistive Superconducting Fault Current Limiter (SFCL) under quench condition. It is very important engineering information for an optimum design of cryogenic system for cooling of a resistive SFCL element. A bifilar coil for resistive SFCL for 10 MVA system was incorporated as a model in this numerical study. From the numerical simulation result, it was found that the averaged temperature on the shunt and Bi-2212 element at 500 kW, 100 ms was 711.1 K and 198.4 K respectively. The temperature variation with the change of the hot-spot size and time is also obtained. The maximum temperature was continuously increased in all cases until the hot-spot stops at 100ms and it was going down after then. Such as, the details of temperature distribution on the SFCL element obtained from this numerical study and it should be very valuable information on the decision of the cooling capacity of cryogenic system.

Manufacture and Test of Small-scale Superconducting Fault Current Limiter by Using the Bifilar Winding of Coated Conductor

  • Yang, Seong-Eun;Ahn, Min-Cheol;Park, Dong-Keun;Jang, Dae-Hee;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.20-23
    • /
    • 2005
  • The Resistive Type High Temperature Superconducting Fault Current Limiter (SFCL) has been developed in many countries. Until now, materials of the resistive SFCL were Bi2212 bulk and YBCO thin film. Although YBCO coated conductor (CC) has many advantages such as high n-value and critical current for applying resistive SFCL, the resistive SFCL using CC doesn't have developed yet. The bifilar winding type SFCL was manufactured and tested rated on 30V/80A. In normal state, the SFCL using pancake type bifilar winding had very low impedance. When a fault occurred, the SFCL limited the fault current efficiently. Through these results of experiment, large-scale SFCL using CC should be developed in the future.

Superconducting Properties and Tunneling Spectroscopy of Bi2Sr2Ca(Cu1-xNix)2O8+δ Film by LPE Method (LPE법으로 성장시킨 Bi2Sr2Ca(Cu1-xNix)2O8+δ 막(film)의 초전도특성 및 터널링 분광)

  • 이민수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.455-459
    • /
    • 2003
  • Tunneling spectra of B $i_2$S $r_2$Ca(C $u_{1-x}$ N $i_{x}$ )$_2$ $O_{8+}$$\delta$/ film by LPE method have been measured using break junctions. The energy gap 2$\Delta$ and 2$\Delta$/ $k_{B}$ $T_{c}$ $^{zero}$ increased with increase of ft. We obtained the energy gap Parameter 2$\Delta$(4.2 K) = 54.4~64 meV, and corresponding1y $\Delta$/ $k_{B}$ $T_{c}$ $^{zero}$=7.36~10.14, larger than the BCS value. The lattice constant c and critical temperature $T_{c}$ $^{zero}$ decrease with increase of $\chi$$_{L}$.

The electrical and structual characteristics of BSCCO film by MOD method (MOD법을 제작된 BSCCO 고온초전도체의 구조적 전기적 특성)

  • Kim, Sun-Mi;Yoon, Soon-Il;Park, Mi-Hwa;Lee, Kie-Jin;Cha, Deok-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.553-556
    • /
    • 2003
  • 금속유기물 용액 증착법(MOD)법은 금속유기물 용액을 스핀 코팅하여 고온 열처리를 통해 대면적의 고온 초전도 박막을 만들 수 있으며, 고가의 진공 시스템이 필요하지 않기 때문에 매우 경제적인 박막 증착 방법이다. 본 연구에서는 MOD법을 이용해서 고온초전도체 마이크로파 필터나 터널접합 소자와 같은 전자 소자 응용 연구를 위해 요구되는 높은 임계전류 특성을 갖도록 박막 성장 조건을 변화시켜서 제작된 고온 초전도체 Bi2Sr2CaCu2O8+d (BSCCO2212) 박막을 제작하였다. 박막 특성은 x-ray diffraction (XRD), scanning electron microscope (SEM)으로 표면적, 구조적 특성을 관찰하고 저항-온도 (R-T) 변화 및 전류-전압 (I-V) 특성 측정을 통해 전기적 특성을 연구하여 임계전류를 향상 시킬 수 있는 박막제작 조건에 관해 논의하였다.

  • PDF

The effect of step heat treatment in the critical current density of BSCCO 2223 tapes (BSCCO 2223선재의 임계전류밀도에 영향을 미치는 단계별 열처리의 효과)

  • 박성창;유재무;고재웅;김영국;김철진
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.90-93
    • /
    • 2002
  • The sintering process of BSCCO 2223 tapes is a complex process that is very sensitive to parameters, such as temperature, oxygen partial pressure, heating and cooling rate and holding time. During the first heat treatment, 2212 phase of precursor powder is partially transformed into 2223 phase and some residual secondary phases, such as $(Bi,Pb)_2$$Sr_2$CuO/sub y/(2201), $(Ca,Sr)_2$CuO/sub y/(2/1AEC), (Ca,Sr)/sub 14/Cu/sub 24/O/sub 41/(14/24 AEC) etc. The secondary phases are difficult to be removed from the BSCCO 2223 matrix on the heat treatment. These secondary phases degrade the critical current density. In order to minimize the amount and size of alkaline earth cuprate(AEC) particles step heat treatment is applied during the first heat treatment under the varying atmosphere. Experimental results showed that by adapting the step heat treatment process, the amount and particle size of the secondary phases in the final tapes are decreased. Consequently, the BSCCO 2223grain texture and Jc properties are improved.

  • PDF