• Title/Summary/Keyword: Bi0.5Na0.5TiO3

Search Result 81, Processing Time 0.037 seconds

Structural, Dielectric and Field-Induced Strain Properties of La-Modified Bi1/2Na1/2TiO3-BaTiO3-SrZrO3 Ceramics

  • Hussain, Ali;Maqbool, Adnan;Malik, Rizwan Ahmed;Zaman, Arif;Lee, Jae Hong;Song, Tae Kwon;Lee, Jae Hyun;Kim, Won Jeong;Kim, Myong Ho
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.566-570
    • /
    • 2015
  • $Bi_{0.5}Na_{0.5}TiO_3$ (BNT) based ceramics are considered potential lead-free alternatives for $Pb(Zr,Ti)O_3$(PZT) based ceramics in various applications such as sensors, actuators and transducers. However, BNT-based ceramics have lower electromechanical performance as compared with PZT based ceramics. Therefore, in this work, lead-free bulk $0.99[(Bi_{0.5}Na_{0.5})_{0.935}Ba_{0.065}]_{(1-x)}La_xTiO_3-0.01SrZO_3$ (BNBTLax-SZ, with x = 0, 0.01, 0.02) ceramics were synthesized by a conventional solid state reaction The crystal structure, dielectric response, degree of diffuseness and electric-field-induced strain properties were investigated as a function of different La concentrations. All samples were crystallized into a single phase perovskite structure. The temperature dependent dielectric response of La-modified BNBT-SZ ceramics showed lower dielectric response and improved field-induced strain response. The field induced strain increased from 0.17%_for pure BNBT-SZ to 0.38 % for 1 mol.% La-modified BNBT-SZ ceramics at an applied electric field of 6 kV/mm. These results show that La-modified BNBT-SZ ceramic system is expected to be a new candidate material for lead-free electronic devices.

Dielectric and Piezoelectric Properties of Pb-free Bi(Na, K)TiO3-SrTiO3 Ceramics with MnO2 Addition (MnO2 첨가에 따른 무연 Bi(Na, K)TiO3-SrTiO3 세라믹스의 유전 및 압전 특성)

  • Lee, Mi-Young;Ryu, Sung-Lim;Yoo, Ju-Hyun;Chung, Kwang-Hyun;Jeong, Yeong-Ho;Hong, Jae-Il;Yoon, Hyun-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1056-1060
    • /
    • 2004
  • In this study, 0.96B $i_{0.5}$($Na_{0.84}$ $K_{0.16}$)$_{0.5}$Ti $O_3$ + 0.04SrTi $O_3$ + 0.3 wt% N $b_2$ $O_{5}$+0.2 wt% L $a_2$ $O_3$ + xwt % Mn $O_2$ were investigated as a function of the amount of Mn $O_2$ addition in order to improve dielectric and piezoelectric properties of Lead-free piezoelectric ceramics. With increasing the amount of Mn $O_2$ addition, the density, electromechanical coupling factor( $k_{p}$), piezoelectric constant( $d_{33}$, $g_{33}$) and curie temperature (Tc) showed the maximum value of 5.7 g/㎤, 38 %, 219 pC/N, 26 mVㆍm/N and 32$0^{\circ}C$ at 0.1 wt% Mn $O_2$ addition, respectively, and mechanical quality factor( $Q_{m}$ ) showed the maximum value of 158 at 0.3 wt% Mn $O_2$ addition.ddition.ion.n.

Electrical properties of (Na0.5K0.5)NbO3-BiTiO3 ceramics with the variation of sintering temperature

  • Lee, Tae-Ho;Lee, Sung-Gap
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.174-176
    • /
    • 2012
  • Piezoelectric 0.93(Na0.5K0.5)NbO3-0.07BiTiO3 (NKN-BTO) ceramics were fabricated by the mixed-oxide method and their structural and dielectric properties was investigated with the variation of sintering temperature. All specimens were crystallized in the perovskite single phase without any formation of a second phase such as pyrochlore. The average grain size of the NKN-BTO specimen sintered at 1130 ℃ is 0.32 ㎛. The specimen sintered at 1100 ℃ showed the highest relative density of 98%. Electromechanical coupling factor, relative dielectric constant and dielectric loss of the NKN-BTO specimens sintered at 1110 ℃ were 0.31, 1222 and 0.02, respectively. Curie temperature of the specimen sintered at 1110 ℃ was 445 ℃.

The Study on the Improvement of Piezoelectric and Electrical Characteristics of Bi0.5(Na0.78K0.22)0.5TiO3 Ceramics Modified by the La-based ABO3 Pervskite Structure (La 기반의 ABO3 구조를 갖는 첨가물에 따른 Bi0.5(Na0.78K0.22)0.5TiO3의 압전 및 전기적인 특성 향상 연구)

  • Lee, Ku Tak;Park, Jung Soo;Yun, Ji Sun;Cho, Jeong Ho;Jeong, Young Hun;Paik, Jong Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.707-711
    • /
    • 2014
  • The $0.99Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3-0.01LaAlO_3$, $0.01LaMnO_3$ or $0.01LaFeO_3$ (0.99BNKT-0.01LA, 0.01LM or 0.01LF) ceramics were prepared by a conventional mixed mothod. The structure and morphology of the lead free ceramics were characterized by XRD (X-ray diffraction) and FE-SEM (field emission scanning electron microscopy). XRD results indicated that the BNKT ceramics modified by LA, LM or LF induced a transition from a ferroelectric tetragonal to a non-polar pseudo-cubic phase, leading to decrease in the remnant polarization ($P_r$) and coercive field ($E_c$) in the P-E hysterisis loops. The effects of the BNKT ceramics modified by La-based $ABO_3$ pervskite structure on the electric-field induced strain were investigated, and the largest normalized unipolar strain ($S_{max}/E_{max}$) was found in BNKT-0.01LF ceramic.

Ferroelectric to Relaxor Transition Behavior in Lead-Free Ternary (Bi0.5Na0.5)TiO3-BiFeO3-SrTiO3 Piezoceramics (Bi0.5Na0.5TiO3-BiFeO3-SrTiO3 삼성분계 무연 압전 세라믹스의 강유전체-완화형 강유전체 상전이 거동)

  • Lee, Sang Sub;Lee, Chang-Heon;Duong, Trang An;Nguyen, Hoang Thien Khoi;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • This study investigated the structural, dielectric, ferroelectric, and strain properties of (0.98-x)Bi1/2Na1/2TiO3-0.02BiFeO3-xSrTiO3 (BNT-BF-100xST, x=0.20, 0.22, 0.24, 0.26, and 0.28). All samples were successfully synthesized using the conventional solid-state reaction method and sintered at 1,175℃ for 2 h. The average grain size of the BNT-BF-100x ceramics decreased with increasing ST content. Furthermore, we observed that the ferroelectric- relaxor transition temperature (TF-R) decreased with increasing ST content, which eventually vanished in the BNT-BF-24ST ceramics. The results indicated that a ferroelectric to relaxor phase transition could be induced by ST modification. Consequently, a large electromechanical strain of 633 pm/V at 4 kV/mm was observed for the BNT-BF-26ST ceramics. These results imply that our materials have the competitive advantage of larger strain under lower operating field conditions compared with other BNT-based lead-free piezoelectric ceramics. We expect that BNT-BF-ST lead-free piezoelectric ceramics are promising candidates as a novel ternary BNT-based system and can find potential applications in actuators.

Tailoring Low-field Strain Properties of [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3 Lead-Free Relaxor/Ferroelectric Composites (무연 완화형/정규 강유전체 복합소재 [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3의 저전계 전계유기 변형 특성 연구)

  • Hong, Chang-Hyo;Kang, Jin-Kyu;Jo, Wook;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.342-347
    • /
    • 2016
  • We investigated the effect of $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ (BNKT) modification on the ferroelectric and electric-field-induced strain (EFIS) properties of lead-free $0.97Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3-0.03LaFeO_3$ (BNKTLF) ceramics as a function of BNKT content (x= 0, 0.1, 0.2, 0.3, 0.5, and 1). BNKT-modified BNKTLF powders were synthesized using a conventional solid-state reaction method. As the BNKT content x increased from 0 to 1 the normalized electric-field-induced strain ($S_{max}/E_{max}$) was observed to increase at relatively low fields, i.e., below the poling field. Moreover, BNKTLF-30BNKT showed about 460 pm/V as low as at 3 kV/mm, which is a considerably high value among the lead-free systems reported so far. Consequently, it was confirmed that ceramic-ceramic composite, a mixture of an ergodic relaxor matrix and embedded ferroelectric seeds, is a salient way to make lead-free piezoelectrics practical with enhanced EFIS at low field as well as less hysterical.

Electrical properties of (Na0.5Bi0.5)(Zr0.75Ti0.25)O3 ceramic

  • Lily, Lily;Yadav, K.L.;Prasad, K.
    • Advances in materials Research
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • Lead-free compound $(Na_{0.5}Bi_{0.5})(Zr_{0.75}Ti_{0.25})O_3$ was prepared using conventional ceramic technique at $1070^{\circ}C$/4h in air atmosphere. X-ray diffraction analysis showed the formation of single-phase orthorhombic structure. Permittivity data showed low temperature coefficient of capacitance ($T_{CC}{\approx}5%$) up to $100^{\circ}C$. Complex impedance studies indicated the presence of grain boundary effect, non-Debye type dielectric relaxation and evidences of a negative temperature coefficient of resistance. The ac conductivity data were used to evaluate the density of states at Fermi level and apparent activation energy of the compound.

Dielectric and Piezoelectric Characteristics of 0.94$(K_{0.5}Na_{0.5})NbO_3$-0.06Ba$(Zr_{0.05}Ti_{0.95})O_3$ Ceramics System According to the variations of sintering aids (소결조재 변화에 따른 0.94$(K_{0.5}Na_{0.5})NbO_3$-0.06Ba$(Zr_{0.05}Ti_{0.95})O_3$ 세라믹스의 유전 및 압전특성)

  • Seo, Byeong-Ho;Kim, Do-Hyung;Lee, Yu-Hyong;Yoo, Ju-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.205-205
    • /
    • 2008
  • PZT 세라믹은 우수한 유전 및 압전특성을 갖고 있어 변압기, 센서 및 엑츄에이터 등에 널리 응용되고 있다. 그러나, 우수한 특성에도 불구하고 PZT세라믹스의 소결시 PbO의 높은 유독성 및 휘발로 인하여 환경오염을 야기 시킨다. 그러므로 PbO로 구성된 세라믹을 대체하기 위한 우수한 압전특성을 가진 비납계 세라믹스 개발이 연구의 주류를 이루고 있다. 그 중 비납계 NKN와 BZT는 대체물질로 많이 관심을 받고 있다. 이는 일반적인 NKN조성은 우수한 압전성과 높은 큐리온도를 가지고 있을 뿐만 아니라, BZT조성의 Zr성분이 큐리온도를 낮추거나 유전특성을 졸게 하여 유전율 곡선을 완화하게 하는 특징이 있다. 하지만 NKN은 $1140^{\circ}C$이상의 소결온도에서 K의 휘발특성으로 인해 소성 후에도 주변의 수분을 흡수하는 조해성이 발생하는 문제가 발생한다. 그래서 본 연구에서는 낮은 온도에서 NKN계 세라믹스의 밀도를 증가시킬 뿐만 아니라, 우수한 유전 및 압전특성을 갖는 세라믹스를 제조하고자 비납계 $0.94(K_{0.5}Na_{0.5})NbO_3-0.06Ba(Zr_{0.05}Ti_{0.95})O_3$ (NKN-BZT)의 조성을 사용하였고 소결조제로는 $MnO_2$, NiO, $Bi_2O_3$, ZnO, $Li_2CO_3$, CuO등을 변화주어 유전 및 압전 특성을 알아보았다.

  • PDF

CuO첨가에 따른 $(Na,K)(Nb,Ta)O_3$ 세라믹스의 유전 및 압전 특성

  • Park, Min-Ho;Lee, Yu-Hyeong;Ryu, Ju-Hyeon;Hong, Jae-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.76-76
    • /
    • 2009
  • PZT세라믹스는 높은 압전특성과 우수한 큐리온도($400^{\circ}C$)를 보유하고 있어 오래시간에 걸쳐 주목받고 있다. 현재 압전변압기, 액츄에이터, 센서등의 압전소자는 PZT를 이용하여 제작하고 있지만 PZT는 고온 소결시 PbO의 휘발이 환경오염을 초래하며 인체의 유해하다는 연구결과가 나왔다. 이에 최근에는 PbO가 포함 되지않은 무연(lead-free)계 압전세라믹스가 주목받고 있다. 무연 압전 세라믹스의 종류로는 Bi-layer-structured ceramics, Bi-perovskite type ceramics, NKN base ceramics 가 존재하고 있다. 그 중 $(Na_{0.5}K_{0.5})NbO_3(NKN)$ 세라믹스는 높은 큐리온도와($400^{\circ}C$)와 높은 전기기계 결합계수(약 36%)를 보유하고 있어 많은 연구가 이루어 지고 있다. 하지만 NKN은 PZT에 비하여 치밀성이 낮으며 일반적인 산화물 소결방법으로는 밀도를 높이기가 어려운 단점이 존재한다. 이를 개선하기 위한 방법으로 hot pressing와 spak plasma sintering, RTGG와 같은 방법으로 밀도를 높일수 있지만 비용이 많이 들어 일반적으로 사용이 어렵다. 다른 방법으로 NKN에 첨가물을 넣는 방법을 사용하고 있는데 방법으로 $LiNbO_3$, $LiTiO_3$, $LiSbO_5$를 첨가하여 개선하는 방법이 있다. 본 실험은 첨가물을 넣는 방식으로 비화학양론적 $(Na_{0.5}K_{0.5})_{0.97}(Nb_{0.9}Ta_{0.1})O_3(NKNT)$조성에 CuO를 mol%로 변화주어 유전 및 압전 특성을 조사하였다.

  • PDF

Nb-doping Effects on Ferroelectric and Piezoelectric Properties of Pb-free Bi0.5Na0.5 (비납계 Bi0.5Na0.5의 강유전 및 압전 특성에 미치는 Nb-doping 효과)

  • Yeo, Hong-Goo;Sung, Yeon-Soo;Song, Tae-Kwon;Cho, Jong-Ho;Jeong, Soon-Jong;Song, Jae-Sung;Kim, Myong-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.705-709
    • /
    • 2006
  • Nb was doped to Pb-free $(Bi_{0.5}Na_{0.5})TiO_3$ (BNT) by a solid state mixing process to form $(Bi_{0.5}Na_{0.5})Ti_{1-x}Nb_xO_3\;(x=0{\sim}0.05)$ (BNTNb) and its doping effects on ferroelectric and piezoelctric properties of BNT were investigated. The BNTNb solid solutions were formed up to x=0.01 with no apparent second phases while grain sizes decreased. As x increased, coercive field ($E_c$) and mechanical quality factor ($Q_m$) decreased but piezoelectric constant ($d_{33}$) increased, which indicates Nb acts as a donor for BNT.