• Title/Summary/Keyword: Bi-Sn

Search Result 220, Processing Time 0.026 seconds

Interfacial Reaction between Ultra-Small 58Bi-42Sn Solder Bump and Au/Ni/Ti UBM for Ultra-Fine Flip Chip Application (고집적 플립 칩용 극미세 58Bi-42Sn 솔더 범프와 Au/Ni/Ti UBM의 계면 반응)

  • Kang, Woon-Byung;Jung, Yoon;Kim, Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.61-67
    • /
    • 2003
  • The interfacial reaction between ultra-small 58Bi-42Sn solder and Au/Ni/Ti under bump metallurgy (UBM) for ultra-fine flip chip application was investigated. The ultra-small 58Bi-42Sn solder bump, about $46{\mu}m$ in diameter, was fabricated by using the lift-off method and reflowed using the rapid thermal annealing (RTA) system. The intermetallic compounds were characterized using a secondary electron microscopy (SEM), an energy dispersive spectroscopy (EDS), and an x-ray diffractometer (XRD). The faceted and polygonal intermetallic compounds were found in the Bi-Sn solder bumps on $Au(0.1{\mu}m)/Ni/Ti$ UBM and they were indentified as $(Au_xBi_yNi_{1-x-y})Sn_2$ Phase. The intermetallic compounds grown from the $Au(0.1{\mu}m)/Ni/Ti$ UBMinterface were dispersed in the solder bump.

  • PDF

Improvement of Reliability of Low-melting Temperature Sn-Bi Solder (저융점 Sn-Bi 솔더의 신뢰성 개선 연구)

  • Jeong, Min-Seong;Kim, Hyeon-Tae;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • Recently, semiconductor devices have been used in many fields owing to various applications of mobile electronics, wearable and flexible devices and substrates. During the semiconductor chip bonding process, the mismatch of coefficient of therm al expansion (CTE) between the substrate and the solder, and the excessive heat applied to the entire substrate and components affect the performance and reliability of the device. These problems can cause warpage and deterioration of long-term reliability of the electronic packages. In order to improve these issues, many studies on low-melting temperature solders, which is capable of performing a low-temperature process, have been actively conducted. Among the various low-melting temperature solders, such as Sn-Bi and Sn-In, Sn-58Bi solder is attracting attention as a promising low-temperature solder because of its advantages such as high yield strength, moderate mechanical property, and low cost. However, due to the high brittleness of Bi, improvement of the Sn-Bi solder is needed. In this review paper, recent research trends to improve the mechanical properties of Sn-Bi solder by adding trace elements or particles were introduced and compared.

A Study on the Process Condition Optimization and Shear Strength of Lead Free Solder Ball (무연 솔더 볼의 전단강도와 공정조건 최적화에 관한 연구)

  • 김경섭;선용빈;장호정;유정희;김남훈;장의구
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.2
    • /
    • pp.39-43
    • /
    • 2002
  • The eutectic solder Sn-37Pb and the lead free solder alloys with the compositions of Sn-0.7Cu, Sn-3.5Ag, Sn-3.5Ag-0.75Cu, Sn-2.0Ag-0.7Cu-3.0Bi were applied to the 48 BGA packages, and then it was discussed for the shear strength at the solder joints as the hardness and the composition of the small solder ball. As a result of experiments, the high degree of hardness with the displacement of 0.043 mm was obtained in Sn-2.0Ag-0.7Cu-3.0Bi. The shear strength of the lead free solder was higher than that of Sn-37Pb solder, and it can be obtained the maximum value of about 52% in Sn-2.0Ag-0.7Cu-3.0Bi.

  • PDF

A Study on the Characteristic of Pb-free Sn-Ag-Bi-Ga Solder Alloys (무연 Sn-Ag-Bi-Ga계 솔더의 특성에 관한 연구)

  • 노보인;이보영
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.42-47
    • /
    • 2000
  • The object of this study is to estimate Sn-Ag-Bi-Ga solder alloy as a substitute for Sn-37Pb alloy. For Sn-Ag-Bi-Ga alloys, Ag, Bi and Ga contents are varied. (Ag : 1~5%, Ga : 3%, Bi : 3~6%) Comparing to Sn-37Pb alloy Sn-Ag-Bi-Ga alloys have wider melting temperature range up to max. $18.7^{\circ}C$. With increasing Ag, Bi contents, the wettability of the alloys increased up to max. 6.6 mN. The vickers hardness of the alloys was max. 46.4 Hv. The ultimate tensile stress of the alloys was max. 60.3 MPa and the elongation was max. 1.2%. The joint strength between circuit board and solder was max. 55.5 N and the joint strength between connector and solder was max. 176.1 N. There were no cracks in this alloys after thermal shock test.

  • PDF

Microstructure and Characteristics of Ag-SnO2-Bi2O3 Contact Materials by Powder Compaction (분말성형법으로 제조된 Ag-SnO2-Bi2O3 접점소재의 미세조직 및 특성)

  • Lee, Jin Kyu
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.41-46
    • /
    • 2022
  • In this study, we report the microstructure and characteristics of Ag-SnO2-Bi2O3 contact materials using a controlled milling process with a subsequent compaction process. Using magnetic pulsed compaction (MPC), the milled Ag-SnO2-Bi2O3 powders have been consolidated into bulk samples. The effects of the compaction conditions on the microstructure and characteristics have been investigated in detail. The nanoscale SnO2 phase and microscale Bi2O3 phase are well-distributed homogeneously in the Ag matrix after the consolidation process. The successful consolidation of Ag-SnO2-Bi2O3 contact materials was achieved by an MPC process with subsequent atmospheric sintering, after which the hardness and electrical conductivity of the Ag-SnO2-Bi2O3 contact materials were found to be 62-75 HV and 52-63% IACS, respectively, which is related to the interfacial stability between the Ag matrix, the SnO2 phase, and the Bi2O3 phase.

A Study on the Soldering Characteristics of Sn-Ag-Bi-In Ball in BGA (Sn-Ag-Bi-In계 BGA볼의 솔더링 특성 연구)

  • 문준권;김문일;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.505-509
    • /
    • 2002
  • Pb is considered to be eliminated from solder, due to its toxicity. However, melting temperatures of most Pb-free solders are known higher than that of Sn37Pb. Therefore, there is a difficulty to apply Pb-free solders to electronic industry. Since Sn3Ag8Bi5In has relatively lower melting range as $188~200^{\circ}C$, on this study. Wettability and soldering characteristics of Sn3Ag8Bi5In solder in BGA were investigated to solve for what kind of problem. Zero cross time, wetting time, and equilibrium force of Sn3Ag8Bi5In solder for Cu and plated Cu such as Sn, Ni, and Au/Ni-plated on Cu were estimated. Plated Sn on Cu showed best wettability for zero cross time, wetting time and equilibrium farce. Shear strength of the reflowed joint with Sn3Ag8Bi5In ball in BGA was investigated. Diameter of the ball was 0.5mm, UBM(under bump metallurgy) was $Au(0.5\mu\textrm{m})Ni(5\mu\textrm{m})/Cu(18\mu\textrm{m})$ and flux was RMA type. For the reflow soldering, the peak reflow temperature was changed in the range of $220~250^{\circ}C$, and conveyor speed was 0.6m/min.. The shear strength of Sn3Ag8Bi5In ball showed similar level as those of Sn37Pb. The soldered balls are aged at $110^{\circ}C$ for 36days and their shear strengths were evaluated. The shear strength of Sn3Ag8Bi5In ball was increased from 480gf to 580gf by aging for 5 days.

Microstructures and Solderability of Multi-composition Sn-Cu Lead-free Solders (Sn-CU계 다원 무연솔더의 미세구조와 납땜특성)

  • Kim Ju-Youn;Bae Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.598-603
    • /
    • 2005
  • To develope new lead-free solders with the melting temperature close to that of Sn-37Pb$(183^{\circ}C)$, Sn-0.7Cu-5Pb-1Ga, Sn-0.7Cu-5Pb-1Ag, Sn-0.7Cu-5Pb-5Bi-1Ag, and Sn-0.7Cu-SBi-1Ag alloys were composed by adding low-netting elements such as Ga, Bi, Pb, and Ag to Sn-0.7Cu. Then the melting temperatures, microstructures, wettability, and adhesion properties of these alloys were evaluated. DSC analysis showed that the melting temperature of Sn-0.7Cu-SPb-1Ga was $211^{\circ}C$, and those of other alloys was in the range of $192\~200^{\circ}C$. Microstructures of these alloys after heat-treatment at $150^{\circ}C$ for 24 hrs were basically composed of coarsely- grown $\beta-Sn$ grains, and $Cu_6Sn_5$ and $Ag_3Sn$ intermetallic precipitates. Sn-0.7Cu-5Pb-1Ga and Sn-0.7Cu-5Pb-5Bi-1Ag showed excellent wettability, while Sn-0.7Cu-5Bi-1Ag and Sn-0.7Cu-5Pb-5Bi-1Ag revealed good adhesion strength with the Cu substrates. Among 4 alloys, Sn-0.7Cu-5Pb-5Bi-1Ag with the lowest melting temperature $(192^{\circ}C)$ and relatively excellent wettability and adhesion strength was suggested to be the best candidate solder to replace Sn-37Pb.

Lower Temperature Soldering of Capacitor Using Sn-Bi Coated $Sn-3.5\%Ag$ Solder (Sn-Bi도금 $Sn-3.5\%Ag$ 솔더를 이용한 Capacitor의 저온 솔더링)

  • Kim Mi-Jin;Cho Sun-Yun;Kim Sook-Hwan;Jung Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.61-67
    • /
    • 2005
  • Since lead (Pb)-free solders for electronics have higher melting points than that of eutectic Sn-Pb solder, they need higher soldering temperatures. In order to decrease the soldering temperature we tried to coat Sn-Bi layer on $Sn-3.5\%Ag$ solder by electroplating, which applies the mechanism of transient liquid phase bonding to soldering. During heating Bi will diffuse into the $Sn-3.5\%Ag$ solder and this results in decreasing soldering temperature. As bonding samples, the 1608 capacitor electroplated with Sn, and PCB, its surface was finished with electroless-plated Ni/Au, were selected. The $Sn-95.7\%Bi$ coated Sn-3.5Ag was supplied as a solder between the capacitor and PCB land. The samples were reflowed at $220^{\circ}C$, which was lower than that of normal reflow temperature, $240\~250^{\circ}C$, for the Pb-free. As experimental result, the joint of $Sn-95.7\%Bi$ coated Sn-3.5Ag showed high shear strength. In the as-reflowed state, the shear strength of the coated solder showed 58.8N, whereas those of commercial ones were 37.2N (Sn-37Pb), 31.4N (Sn-3Ag-0.5Cu), and 40.2N (Sn-8Zn-3Bi). After thermal shock of 1000 cycles between $-40^{\circ}C$ and $+125^{\circ}C$, shear strength of the coated solder showed 56.8N, whereas the previous commercial solders were in the range of 32.3N and 45.1N. As the microstructures, in the solder $Ag_3Sn$ intermetallic compound (IMC), and along the bonded interface $Ni_3Sn_4$ IMC were observed.

Improvement in Tensile Strength, Scratch Resistance and Tribological Performance of Cu-based Bimetals by Surface Modification Technology (표면개질 기술에 의한 Cu 기반 바이메탈의 인장강도, 스크래치 저항성 및 트라이볼로지 성능 향상)

  • Karimbaev, R.;Amanov, A.
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.83-90
    • /
    • 2021
  • In this study, an ultrasonic nanocrystal surface modification (UNSM) was used to improve the mechanical properties, scratch resistance and tribological performance of Cu-based bimetals, which are usually used to manufacture sliding bearings and bushings for internal combustion engines (ICEs). Two different Cu-based bimetals, namely CuPb10Sn10 and CuSn10Bi7, were sintered onto a low carbon steel substrate. The mechanical properties and dry tribological performance using a tensile tester and micro-tribo tester were evaluated, respectively. The scratch resistance was assessed using a micro-scratch tester at an incremental load. The tensile test results showed that the yield strength (YS) and ultimate tensile strength (UTS) of both Cu-based bimetals increased after UNSM. Furthermore, the scratch and tribological tests results revealed that the scratch resistance and tribological performance of both Cu-based bimetals were improved by the application of UNSM. These improvements were mainly attributed to the eliminated pores, increased hardness and reduced roughness after UNSM. CuSn10Bi7 demonstrated better mechanical properties, scratch resistance and tribological performance than CuPb10Sn10. It was found that the presence of Bi in CuSn10Bi7 formed a Cu11Bi7 intermetallic phase, which is harder than Cu3Sn. Hence, CuSn10Bi7 demonstrated higher strength and wear resistance than CuPb10Sn10. In addition, a CuSn10Bi7 formed both SnO2 and Bi2O3 that prevented adhesion and improved the tribological performance. It can be expected that under dry tribological conditions, ICEs can utilize UNSM bearings and bushings made of CuSn10Bi7 instead of CuPb10Sn10 under oil-lubricated conditions.