• Title/Summary/Keyword: Bi-Sn

Search Result 220, Processing Time 0.027 seconds

Low-Temperature Sintering and Dielectric Properties of BaSn(BO3)2 Ceramics (BaSn(BO3)2세라믹스의 저온소결 및 유전특성)

  • Nam, Myung-Hwa;Kim, Hyo-Tae;Hwang, June-Cheol;Nam, Joong-Hee;Yeo, Dong-Hoon;Kim, Jong-Hee;Nahm, Sahn
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.92-97
    • /
    • 2006
  • Dolomite type $BaSn(BO_3)_2$ ceramics with rhombohedral crystal structure has been synthesized via solid state reaction route. Dielectric properties were measured for the samples sintered at $1050\~1200^{\circ}C$ for 2 h in air. Dielectric constant, loss tangent, and temperature coefficient were increased with sintering temperature due to the evolution of $BaSnO_3$, secondary, phase. Optimum dielectric properties were obtained at the $BaSn(BO_3)_2$ ceramics sintered at $1100^{\circ}C.\;CuO/Bi_2O_3$ was added to $BaSn(BO_3)_2$ ceramics to lower the sintering temperature for LTCC application, then Co and Fe-based coloring agents were added for colorizing the LTCC tape. Typical dielectric properties of $BaSn(BO_3)_2$ ceramics with $5 wt\%\;CuO/Bi_2O_3\;and\;3wt\%$ Co-coloring agent that sintered at $900^{\circ}C$ were $\varepsilon_r=9.89,\;tan{\delta}=0.92\times10^{-3},\;and\;TCC=112ppm/^{\circ}C$. Thus obtained LTCC tape was co-fired with Ag paste for compatibility test and revealed no sign of Ag reaction with the ceramics.

Joining properties and thermal cycling reliability of the Si die-attached joint with Zn-Sn-based high-temperature lead-free solders (Zn-Sn계 고온용 무연솔더를 이용한 Si다이접합부의 접합특성 및 열피로특성)

  • Kim, Seong-Jun;Kim, Keun-Soo;Suganuma, Katsuaki
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.72-72
    • /
    • 2009
  • 전자부품의 내부접속 및 파워반도체의 다이본딩과 같은 1차실장에는 고온환경에서의 사용과 2차실장에서의 재용융방지를 위해 높은 액상선온도 및 고상선온도를 필요로 하여, Pb-5wt%Sn, Pb-2.5wt%Ag로 대표되는 납성분 85%이상의 고온솔더가 널리 사용되고 있다. 생태계와 인체에 대한 납의 유해성이 보고된 이래, 무연솔더에 대한 연구가 활발히 진행되어 왔으나, Sn-Ag-Cu계로 대표되는 Sn계 합금으로 대체 중인 중온용 솔더와는 달리, 고온용 솔더에 대해서는 대체합금에 대한 연구가 미흡한 실정이다. 대체재의 부재로 인해 기존의 납을 다량함유한 솔더로 1차실장이 지속됨으로서, 2차실장의 무연화에도 불구하고 전자부품 및 기기의 재활용에 큰 어려움을 겪고 있다. 지금까지 고온용 무연솔더로서는 융점에 근거해 Au-(Sn, Ge, Si)계, Bi-Ag계, Zn-(Al, Sn)계의 극히 제한된 합금계만이 보고되어 왔다. Au계 솔더는 현재 플럭스를 사용하지 않는 광학, 디스플레이 분야 등 고부가가치 공정에 사용되고 있으나, 합금가격이 매우 비싸며 가공성이 나빠 대체재료로서는 적합하지 않다. Bi-Ag계 솔더 또한 취성합금으로 와이어 및 박판으로 가공하는데 어려움이 크며, 솔더로서 중요한 특성중 하나인 전기전도도 및 열전도도가 나쁜 편이다. 이에 비해, Zn계 합금은 비교적 낮은 합금가격, 적절한 가공성과 뛰어난 인장강도, 우수한 전기전도도 및 열전도도를 지녀, 고온용솔더 대체재료의 유력한 후보로 생각된다.이전 연구에서, 필자의 연구그룹은 Zn-Sn계 합금을 고온용 무연솔더로서 제안한 바 있다. Zn-Sn계 합금은 충분히 높은 융점과 함께, 금속간화합물이 없는 미세조직, 우수한 기계적 특성, 높은 전기전도도 및 열전도도 등의 장점을 나타내었다. 본 연구에서는 기초합금특성상 고온솔더로서 다양한 장점을 지닌 Zn-30wt%Sn합금을 고온용 솔더의 대표적인 적용의 하나인 다이본딩에 적용하여, 접합부의 강도 및 미세조직, 열피로 신뢰성에 대해 분석을 함으로서 실제 공정에의 적용가능성에 대해 검토하였다. Zn-30wt%Sn을 이용해 Au/TiN(Titanium nitride) 코팅한 Si다이를 AlN-DBC(aluminum nitride-direct bonded copper)기판에 접합한 결과, 양측에 완전히 젖은 기공이 없는 양호한 다이접합부를 얻었으며, 솔더내부에는 금속간화합물을 형성하지 않았다. Si다이와의 계면에는 TiN만이 존재하였으며, Cu와의 계면에는 Cu로부터 $Cu_5Zn_8,\;CuZn_5$의 반응층을 형성하였다. 온도사이클시험을 통한 열피로특성평가에서, Zn-30wt%Sn를 이용한 다이접합부는 1500사이클 지점에서 Cu와 Cu-Zn금속간화합물의 사이에서 피로균열이 형성되며, 접합강도가 크게 감소하였다. 열피로특성 향상을 위해 Cu표면에 TiN코팅을 하여 Zn-30wt%Sn 솔더로 다이접합한 결과, Si다이와 기판 양측에 TiN만으로 구성된 계면을 형성하였으며, TEM관찰을 통해 Zn-30wt%Sn과 극히 미세한 접합계면이 형성하고 있음을 확인하였다. Zn-wt%30Sn솔더와 TiN층의 병용으로 2000사이클까지 미세조직의 변화 및 강도저하가 없는 극히 안정된 고신뢰성의 다이접합부를 얻을 수가 있었다.

  • PDF

Evaluation of Pull Strengths and Fracture Modes of Solder Joino by Modified Ball Pull Testing with Protrusion Jaw (Protrusion Jaw가 적용된 볼 당김시험을 이용한 솔더 접합부의 강도와 파괴 메커니즘 분석에 관한 연구)

  • Kim Hyoung-Il;Han Sung-Won;Kim Jong-Min;Choi Myung-Ki;Shin Young-Eul
    • Journal of Welding and Joining
    • /
    • v.23 no.4
    • /
    • pp.34-40
    • /
    • 2005
  • There have been numerous approaches to examine the bonding strengths of solder joints. However, despite the technical and practical limitations, the precedent test methods such as the ball shear and ball pull tests are being used in industrial applications. In this study, the optimum jaw pressure with the modified protrusion jaw was introduced in order to obtain higher successful rate f3r ball pull testing. Furthermore, the pull strengths and fracture modes of Sn-8Zn-3Bi, Sn-4Ag-0.7Cu, and Sn-37Pb eutectic solder after isothermal aging tests ($100^{\circ}C,\;150^{\circ}C$), were evaluated with the protrusion jaw. The pull strength-displacement hysteresis curves and fracture surfaces were carefully investigated to evaluate the correlation between the pull strengths and the fracture modes of each solder. In conclusion, it is verified that Au-Zn IMCs (Intermetallic Compounds) have a detrimental effect on the pull strengths and changed fracture modes of Sn-8Zn-3Bi solder. Meanwhile, the microstructure transformation influences the degradation of pull strengths of Sn-4Ag-0.7Cu and Sn-37Pb solders.

All Solution processed BiVO4/WO3/SnO2 Heterojunction Photoanode for Enhanced Photoelectrochemical Water Splitting

  • Baek, Ji Hyun;Lee, Dong Geon;Jin, Young Un;Han, Man Hyung;Kim, Won Bin;Cho, In Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.417-417
    • /
    • 2016
  • Global environmental deterioration has become more serious year by year and thus scientific interests in the renewable energy as environmental technology and replacement of fossil fuels have grown exponentially. Photoelectrochemical (PEC) cell consisting of semiconductor photoelectrodes that can harvest light and use this energy directly to split water, also known as photoelectrolysis or solar water splitting, is a promising renewable energy technology to produce hydrogen for uses in the future hydrogen economy. A major advantage of PEC systems is that they involve relatively simple processes steps as compared to many other H2 production systems. Until now, a number of materials including TiO2, WO3, Fe2O3, and BiVO4 were exploited as the photoelectrode. However, the PEC performance of these single absorber materials is limited due to their large charge recombinations in bulk, interface and surface, leading low charge separation/transport efficiencies. Recently, coupling of two materials, e.g., BiVO4/WO3, Fe2O3/WO3 and CuWO4/WO3, to form a type II heterojunction has been demonstrated to be a viable means to improve the PEC performance by enhancing the charge separation and transport efficiencies. In this study, we have prepared a triple-layer heterojunction BiVO4/WO3/SnO2 photoelectrode that shows a comparable PEC performance with previously reported best-performing nanostructured BiVO4/WO3 heterojunction photoelectrode via a facile solution method. Interestingly, we found that the incorporation of SnO2 nanoparticles layer in between WO3 and FTO largely promotes electron transport and thus minimizes interfacial recombination. The impact of the SnO2 interfacial layer was investigated in detail by TEM, hall measurement and electrochemical impedance spectroscopy (EIS) techniques. In addition, our planar-structured triple-layer photoelectrode shows a relatively high transmittance due to its low thickness (~300 nm), which benefits to couple with a solar cell to form a tandem PEC device. The overall PEC performance, especially the photocurrent onset potential (Vonset), were further improved by a reactive-ion etching (RIE) surface etching and electrocatalyst (CoOx) deposition.

  • PDF

Studies of Element Substitution on Superconductivity in Bi-Sr-Ca-Cu-O Oxides (Bi계 치환 고온 초전도체)

  • 권오흥;박천제
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.124-128
    • /
    • 2000
  • The high Tc phase disappeared and low Tc phase increased in the substitution of transition elements for Bi ions. The high Tc phase decreased in the substitution of Si and Sn for Bi ions. The high Tc phase increased in the substitution of Sb, As and P which were the same group of Bi for Bi ions. The substitution of P ions was the most effective and then the high Tc phase was formed in large quantity by replacing Bi ions with 30% of P ions.

  • PDF

Studies on Thermostable Ceramic Resistors (열에 안정한 Ceramic Resistor의 제조에 관한 연구)

  • Ahn, Young-Pil;Kim, Sang-Wook;Choi, Long
    • Journal of the Korean Ceramic Society
    • /
    • v.12 no.2
    • /
    • pp.15-20
    • /
    • 1975
  • Ceramic resistors to be stable at high temperature were manufactured from using MgO, SiO2, SnO2, Bi2O3, and CeO2 by sintering in air at 125$0^{\circ}C$. Electrical resistivity with elevated temperatures was studied for the various system of the above oxides. The resistor, 1.0 MgO-1.0 SiO2-0.575 SnO2-0.005 Sb2O3-0.025 Bi2O3-0.013 CeO2 has the resistivity, (14.55$\pm$0.3)$\times$103 ohm in a temperature range from $25^{\circ}C$. to 80$0^{\circ}C$. It is concluded that the ceramics prepared by a dielectric compound and metal oxide semi-conductor has a good thermostability for electrical appliciations.

  • PDF

A Study on the Analytical Method of Trace Metal Ions in Sea Water by Inductively Coupled Plasma - Mass Spectrometry using Solid-Liquid Extraction Technique (유도결합 플라스마-질량분석법과 고체-액체 추출법을 이용한 해수중 미량금속의 분석에 관한 연구)

  • Lee, Won;Park, Kyung-Su;Kim, Eun Kyung;Hur, Young-Hoe
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.499-504
    • /
    • 1998
  • An analytical method for the simultaneous measurement of trace Cu, Sn, and Bi in sea water has been investigated by Inductively Coupled Plasma-Mass Spectrometry. Amberlite IRC-718 resin was used as a solid phase in solid-liquid extraction technique for the removal of matrix interferences such as Na, S, P, and other polyatomic ion species. Recoveries of 99.8% for Cu, 99.6% for Sn, and 97.9% for Bi were obtained for the standard spiked sample. The developed method was applied to analysis of trace metals in sea water.

  • PDF

Thermodynamic interaction parameter between Zn and Cu, Ag, In, Bi, Pb, Sn in Dilute cadmium alloy by Touch Instant electro-motive force method (순간접전기전력법에 의한 용융 Cd중의 Zn과 Cu, Ag, In, Bi, Pb 및 Sn와의 상위작용 파라미터)

  • 김대룡;윤겸하
    • Journal of the Korean institute of surface engineering
    • /
    • v.15 no.4
    • /
    • pp.192-207
    • /
    • 1982
  • A study has been made of the interaction parameters of Zn other elements in dilute solutesd solution of molten cadmium alloys over the temperature range of 450 to 570$^{\circ}C$. The experi-mental measurementss were made in a touch instant cell using a fusedd Licl-KCl electrolyte. The activity of zinc in binary and ternary solutions sexhibiteds a strong positive deviation from Raoult's law. The addition of silver, indium or lead increased the activity of zinc whereas addition of copper, bismuth or tin decreased the zinc activity slightly. The results for all the metallic solutions showed a linear dependence of reciprocal of ab-solute temperature over the experimental range. The interaction parameters obtained are as follows.

  • PDF

Degradation Behavior of Eutectic and Pb-free Solder Plated Ribbon in Crystalline Silicon Photovoltaic Module (유무연 용융도금 리본에 따른 결정질 실리콘 태양전지 모듈 열화거동)

  • Kim, Ju-Hee;Kim, A Yong;Park, Nochang;Ha, Jeong Won;Lee, Sang Guon;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.75-81
    • /
    • 2014
  • Usage of heavy metal element (Pb, Hg and Cd etc.) in electronic devices have been restricted due to the environmental banning of the European Union, such as WEEE and RoHS. Therefore, it is needed to develop the Pb-free solder plated ribbon in photovoltaic (PV) module. This study described that degradation characteristics of PV module under damp heat (DH, $85^{\circ}C$ and 85% R.H.) condition test for 1,000 h. Solar cell ribbons were utilized to hot dipping plate with Pb-free solder alloys. Two types of Pb-free solder plated ribbons, Sn-3.0Ag-0.5Cu (SAC305) and Sn-48Bi-2Ag, and an electroless Sn-40Pb solder hot dipping plated ribbon as a reference sample were prepared to evaluate degradation characteristics. To detect the degradation of PV module with the eutectic and Pb-free solder plated ribbons, I-V curve, electro-luminescence (EL) and cross-sectional SEM analysis were carried out. DH test results show that the reason of maximum power (Pm) drop was mainly due to the decrease fill factor (FF). It was attributed to the crack or oxidation of interface between the cell and the ribbon. Among PV modules with the eutectic and Pb-free solder plated ribbon, the PV module with SAC305 ribbon relatively showed higher stability after DH test than the case of PV module with Sn-40Pb and Sn-48Bi-2Ag solder plated ribbons.

Characteristic of Intermetallic Compounds for Aging of Lead Free Solders Applied to 48 $\mu$BGA (48 $\mu$BGA에 적용한 무연솔더의 시효처리에 대한 금속간화합물의 특성)

  • Shin, Young-Eui;Lee, Suk;Fujimoto, Kozo;Kim, Jong-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.37-42
    • /
    • 2001
  • The concerns of the toxicity and health hazard of lead in solders have demanded the research to find suitable lead-free solder alloys. It was discussed that effect of the intermetallic formation and structure on the reliability of solder joints. In this study, lead-free solder alloys with compositions of Sn/3.5Ag/0.75Cu, Sn/2.0Ag/0.5Cu/2.0Bi were applied to the 48 $\mu$BGA packages. Also, the lead-free solder alloys compared with eutectic Sn/37Pb solder using shear test under various aging temperature. Common $\mu$BGA with solder components was aged at $130^{\circ}C$, $150^{\circ}C$ and $170^{\circ}C$. And the each temperature applied to 300, 600 and 900 hours. The thickness of the intermetallics was measured for each condition and the activation energy for their growth was computed. The fracture surfaces were analyzed using SEM (Scanning Electron Microscope) with EDS (Energy Dispersive Spectroscopy). These results for reliability of lead-free interconnections are discussed.

  • PDF