• Title/Summary/Keyword: Bi-Sn

Search Result 220, Processing Time 0.032 seconds

Sn계 무연 솔더에 관한 연구

  • 이창배;정승부;서창제
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.75-87
    • /
    • 2001
  • Three different kinds of substrate used in this study : bare Cu substrate, Ni-P/Cu substrate with a Ni-P layer thickness of $5\mu\textrm{m},$ and Au/Ni-P/Cu substrate with the Ni-P and Au layers of $0.15\mu\textrm{m}$ and $5\mu\textrm{m}$ thickness respectively. The wettability of various Sn-base solders was affected by the substrate metal finish used, i.e., nickel, gold and copper. On the Au/Ni-F/Cu substrate, Sn-base solders wet better than any of the other substrate metal finishes tested. The interfacial reaction between various substrate and Sn-base solder was investigated at $70^{\circ}C,$ $100^{\circ}C,$ $120^{\circ}C,$ $150^{\circ}C,$ $170^{\circ}C$ and $200^{\circ}C$ for reaction times ranging from 0 day to 60 day. Intermetallic phases was formed along a Sn-base solder/ various substrate interface during solid-state aging. The apparent activation energy for growth of Sn-Ag/Cu, Sn-Ag-Bi/Cu, and Sn-Bi/Cu couples were 65.4, 88.6, and 127.9 Kj/mol, respectively. After isothermal aging, the fracture surface shoved various characteristics depending on aging temperature and time, and the types of BGA pad.

  • PDF

태양전지 interconnect ribbon용 Sn-Bi계 무연솔더 연구

  • Gang, In-Gu;Kim, Hyeok-Jong;Kim, Do-Hyeong;Kim, Jin-Sik;Kim, Hyo-Jae;Won, Su-Hyeon;Jo, Seong-Hun;Lee, Sang-Gwon;Ha, Jeong-Won;Choe, Byeong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.113.2-113.2
    • /
    • 2011
  • Sn-Ag계 합금은 대표적인 무연 솔더 조성으로 전자제품의 실장 및 접합에 적용되어 왔으며, 태양전지 분야에서도 모듈의 전극과 bus바로 사용되는 등 다양한 분야에서 사용되고 있다. 그러나 최근 Ag 가격의 급격한 상승과 솔더 접합부의 신뢰성을 보다 향상시키고자 Ag의 함량을 줄이고 다원계 합금 조성의 무연 솔더 연구가 활발히 진행되고 있다. 본 실험에서는 기존의 연구 결과를 바탕으로 Sn-1.0Ag-0.5Cu-0.4In 4원계 무연솔더 조성에 Bi를 첨가하여 최적의 융점과 용융구간을 가지는 5원계 Sn-Ag-Cu-In-Bi 계 솔더 합금을 설계하였다. 이 설계된 합금은 기존의 유연 솔더인 Sn-Pb와 대표적인 무연 솔더인 Sn-3.5Ag와 각각의 특성을 비교 분석하였다. 젖음성을 평가하기 위하여 wetting balance tester를 이용하여 실험을 행하였고 Differential Scanning Calorimetry(DSC)를 분석하여 젖음 정도와 조성 분석 및 고상점과 액상점 등의 녹음 거동을 확인하였다. 또한 각각의 조성별 전단응력에 따른 파괴 거동을 분석하였다.

  • PDF

Physico-mechanical Properties and Optimum Manufacturing Conditions of Bi-Sn Metal Alloy Impregnated Wood Composites (Bi-Sn 용융합금주입 목재복합체의 최적제조조건 및 물리·기계적 특성)

  • Park, Kye-Shin;Lee, Hwa-Hyoung;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.691-699
    • /
    • 2014
  • In order to improve the dimensional stability and durability of wood, this study attempted to impregnate bismuth (Bi) - tin (Sn) alloy metal with low melting temperature into solid woods of three species such as radiata pine, red oak and white oak, and investigated to determine an optimum condition of manufacturing the metal alloy-wood composites with natural wood grains. These Bi-Sn alloys were chosen for this study because they were harmless to human and melting at low temperatures. The composites resulted in high dimensional stability and low thickness swelling, and also showed much improved performance such as high bending strength, high hardness, high electric conductivity, and high thermal conductivity as floor materials. A proper impregnating condition of all specimens was determined as 10 minutes of the preliminary vacuum time, and $185^{\circ}C$ of the heating temperature. The proper processing condition for radiata pine wood was 2.5 minutes of the pressuring time at the pressure of $10kgf/cm^2$. For red oak wood, 10 minutes of the pressuring time at the pressure of $30kgf/cm^2$ were the proper condition. The proper manufacture conditions for white oak wood was determined as 10 minutes of the pressuring time at the pressure of $50kgf/cm^2$.

Interfacial and Mechanical Properties of Sn-57Bi-1Ag Solder Joint with Various Conditions of a Laser Bonding Process (다양한 레이저 접합 공정 조건에 따른 Sn-57Bi-1Ag 솔더 접합부의 계면 및 기계적 특성)

  • Ahn, Byeongjin;Cheon, Gyeong-Yeong;Kim, Jahyeon;Kim, Jungsoo;Kim, Min-Su;Yoo, Sehoon;Park, Young-Bae;Ko, Yong-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.65-70
    • /
    • 2021
  • In this study, interfacial properties and mechanical properties of joints were reported after Cu pads finished with organic solderability preservative (OSP) on flame retardant-4 (FR-4) printed circuit board (PCB) and electronic components were joined with a Sn-57Bi-1Ag solder paste by using a laser bonding process. The laser bonding process was performed under various bonding conditions with changing a laser power and a bonding time and effects of bonding conditions on interfacial and mechanical properties of joints were analyzed. In order to apply for industry, properties of bonding joints using a reflow bonding process which are widely used were compared. When the laser bonding process were performed, we observed that Cu6Sn5 intermetallic compounds (IMCs) were fully formed at the interface although the bonding times were very short about 2 and 3 s. Furthermore, void formations of the joints by using the laser bonding process were suppressed at the joints with comparing to the reflow bonding process and shear strengths of bonding joints were higher than that by using the reflow bonding process. Therefore, in spite of a very short bonding time, it is expected that joints will be stably formed and have a high mechanical strength by using the laser bonding process.

A study on reactive chlorine species generation enhanced by heterojunction structures on surface of IrO2-based anodes for water treatment (IrO2 기반 수처리용 산화 전극의 표면 이종 접합 구성에 따른 활성 염소종 발생 증진 특성 연구)

  • Hong, Sukhwa;Cho, Kangwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.349-355
    • /
    • 2018
  • This study interrogated multi-layer heterojunction anodes were interrogated for potential applications to water treatment. The multi-layer anodes with outer layers of $SnO_2/Bi_2O_3$ and/or $TiO_2/Bi_2O_3$ onto $IrO_2/Ta_2O_5$ electrodes were prepared by thermal decomposition and characterized in terms of reactive chlorine species (RCS) generation in 50 mM NaCl solutions. The $IrO_2/Ta_2O_5$ layer on Ti substrate (Anode 1) primarily served as an electron shuttle. The current efficiency (CE) and energy efficiency (EE) for RCS generation were significantly enhanced by the further coating of $SnO_2/Bi_2O_3$ (Anode 2) and $TiO_2/Bi_2O_3$ (Anode 3) layers onto the Anode 1, despite moderate losses in electrical conductivity and active surface area. The CE of the Anode 3 was found to show the highest RCS generation rate, whereas the multi-junction architecture (Anode 4, sequential coating of $IrO_2/Ta_2O_5$, $SnO_2/Bi_2O_3$, and $TiO_2/Bi_2O_3$) showed marginal improvement. The microscopic observations indicated that the outer $TiO_2/Bi_2O_3$ could form a crack-free layer by an incorporation of anatase $TiO_2$ particles, potentially increasing the service life of the anode. The results of this study are expected to broaden the usage of dimensionally stable anodes in water treatment with an enhanced RCS generation and lifetime.

Studies of Element Substitution on Superconductivity in Bi-Sr-Ca-Cu-O Oxides (Bi계 치환 고온 초전도체)

  • 권오흥;박천제
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.124-128
    • /
    • 2000
  • The high Tc phase disappeared and low Tc phase increased in the substitution of transistion elements for Bi ions. The high Tc phase decreased in the substitution of Si and Sn for Bi ions. The high Tc phase increased in the substitution of Sb, As and P Which Were the same group of Bi for Bi ions. The substitution of P ions was the most effective and then the high Tc phase was formed in large quantity by replacing Bi ions with 30%of P ions.

  • PDF