• 제목/요약/키워드: Bi$^{3+}$ doping

검색결과 83건 처리시간 0.028초

Effect of Ta-Substitution on the Ferroelectric and Piezoelectric Properties of Bi0.5/(Na0.82K0.18)0.5TiO3 Ceramics

  • Do, Nam-Binh;Lee, Han-Bok;Yoon, Chang-Ho;Kang, Jin-Kyu;Lee, Jae-Shin;Kim, Ill-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권2호
    • /
    • pp.64-67
    • /
    • 2011
  • The effect of Ta substitution on the crystal structure, ferroelectric, and piezoelectric properties of $Bi_{0.5}(Na_{0.82}K_{0.18})_{0.5}Ti_{1-x}Ta_xO_3$ ceramics has been investigated. The Ta doping resulted in a transition from coexistence of ferroelectric tetragonal and rhombohedral phases to an electrostrictive pseudocubic phase, leading to degradations of the remnant polarization, coercive field, and piezoelectric coefficient $d_{33}$. However, the electricfield-induced strain was significantly enhanced by the Ta substitution-induced phase transition and reached a highest value of $S_{max}/E_{max}$ = 566 pm/V under an applied electric field 6 kV/mm when 2% Ta was substituted on Ti sites. The abnormal enhancement in strain was attributed to the pseudocubic phase with high electrostrictive constants.

Effect of Nb Doping on the Dielectric and Strain Properties of Lead-free 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 Ceramics

  • Han, Hyoung-Su;Hong, In-Ki;Kong, Young-Min;Lee, Jae-Shin;Jo, Wook
    • 한국세라믹학회지
    • /
    • 제53권2호
    • /
    • pp.145-149
    • /
    • 2016
  • $(Bi_{1/2}Na_{1/2})_{0.94}Ba_{0.06}(Ti_{1-x}Nb_x)O_3$ (BNBTxNb) ceramics were investigated in terms of the crystal structure as well as the ferroelectric, dielectric, and piezoelectric properties. While little change was observed in the microstructure except for a slight decrease in the average grain size, a significant change was noticed in the temperature dependence of dielectric and piezoelectric properties. It was shown that the property changes are closely related to the downward shift in the position of the ferroelectric-to-relaxor transition temperature with increasing amount of Nb doping. A special emphasis is put on the fact that Nb doping is so effective at decreasing the ferroelectric-to-relaxor transition temperature that even at no more than 2 at.% Nb addition, the transition temperature was already brought down slightly below room temperature, resulting in the birth of a large strain at 0.46 %, equivalent to $S_{max}/E_{max}=767pm/V$.

Magnetic and Electric Properties of Multiferroic Ni-doped BiFeO3

  • 유영준;황지섭;박정수;이주열;강지훈;김기원;이광훈;이보화;이영백
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.182-182
    • /
    • 2014
  • Multiferroic materials have attracted much attention due to their own fascinating fundamental physical properties and potential technological applications to magnetic/ferroelectric data storage systems, quantum electromagnets, spintronics, and sensor devices. Among single-phase multiferroic materials, $BiFeO_3$, in particular, has received considerable attention because the enhanced ferromagnetism was found by the Fe-site ion substitution with magnetic ions. The structural, the magnetic and the ferroelectric properties of polycrystalline $BiFe_{1-x}Ni_xO_3$ (x=0, 0.01, 0.02, 0.03 and 0.05), which were prepared by the solid-state reaction and the rapid-sintering method, have been investigated. The x-ray diffraction patterns reveal that all the samples are in single phase and show rhombohedral structure with R3c space group. The magnetic properties are enhanced according to the doping content. The Ni-doped $BiFeO_3$ samples exhibit lossy P-E loop due to the oxygen vacancy. The leakage current density of Ni-doped samples (x=0.01 and 0.02) is increased by four orders of magnitude. On the other hand, the x=0.03 and 0.05 samples show the relative reduction of the leakage current.

  • PDF

High Crystalline Epitaxial Bi2Se3 Film on Metal and Semiconductor Substrates

  • 전정흠;장원준;윤종건;강세종
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.302-302
    • /
    • 2011
  • The binary chalcogenide semiconductor Bi2Se3 is at the center of intensive research on a new state of matter known as topological insulators. It has Dirac point in their band structures with robust surface states that are protected against external perturbations by strong spin-orbit coupling with broken inversion symmetry. Such unique band configurations were confirmed by recent angle-resolved photoelectron emission spectroscopy experiments with an unwanted n-type doping effect, showing a Fermi level shift of about 0.3 eV caused by atomic defects such as Se vacancies. Since the number of defects can be reduced using the molecular beam epitaxy (MBE) method. We have prepared the Bi2Se3 film on noble metal Au(111) and semiconductor Si(111) substrates by MBE method. To characterize the film, we have introduced several surface sensitive techniques including x-ray photoemission electron spectroscopy (XPS) and micro Raman spectroscopy. Also, crystallinity of the film has been confirmed by x-ray diffraction (XRD). Using home-built scanning tunneling microscope, we observed the atomic structure of quintuple layered Bi2Se3 film on Au(111).

  • PDF

졸-겔법으로 성장시킨 바나듐이 도핑된 ${Bi_4}{Ti_3}{O_{12}}$ 박막의 미세구조 및 전기적 특성 (Microstructure and Electrical Properties of Vanadium-doped ${Bi_4}{Ti_3}{O_{12}}$ Thin Films Prepared by Sol-gel Method)

  • 김종국;김상수;최은경;김진흥;송태권;김인성
    • 한국재료학회지
    • /
    • 제11권11호
    • /
    • pp.960-964
    • /
    • 2001
  • $Bi_{3.99}Ti_{2.97}V_{0.03}O_{12}$ (BTV) thin films with 3 mol% vanadium doping were Prepared on $Pt/Ti/SiO_2/Si$ substrate by sol-gel method. X-ray diffraction analysis indicated that single-phase layered perovskite were obtained and preferred orientation was not observed. Under the annealing temperature at $600^{\circ}C$, the surface morphology of the BTV thin films had fine-rounded particles and then changed plate-like at $650^{\circ}C$ and $700^{\circ}C$. The remanent polarization $(2P_r)$ and coercive field $(2E_c)$ of $700^{\circ}C$ annealed BTV thin film were 25 $\mu$C/cm$^2$ and 116 kV/cm, respectively. In addition, BTV thin film showed little polarization fatigue during $10_9$ switching cycles. These improved ferroelectric properties were attributed to the increased rattling space and reduced oxygen vacancies by substitution $Ti^{4+}$ ion (68 pm) with smaller $V^{5+}$ ion (59 pm). The dielectric constant and loss were measured 130 and 0.03 at 10 kHz, respectively.

  • PDF

(Bi,Nd)(Fe,Ti)$O_3$ 다강체 세라믹 및 박막의 상변화 거동 (Phase Evolution Behavior of Multiferroic (Bi,Nd)(Fe,Ti)$O_3$ Ceramics and Thin Films)

  • 김경만;양판;이재열;이희영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.231-232
    • /
    • 2008
  • The coupling between electric, magnetic, and structural order parameters results in the so-called multiferroics, which possess ferroelectricity, ferromagnetism, and/or ferroelasticity. The simultaneous ferroelectricity and ferromagnetism (magnetoelectricity) allow potential applications in information storage, spintronics, and in magnetic or electric field sensors. Perovskite compound $BiFeO_3$ (BFO) is antiferromagnetic below Neel temperature of 647K and ferroelectric with a high Curie temperature of 1043K. It exhibits weak magnetism at room temperature(RT) due to the residual moment from a canted spin structure. It is likely that non-stoichiometry and second-phase formation are the factors which cause leakage in BFO. It has been suggested that oxygen non-stoichiometry leads to valence fluctuations of Fe ions in BFO, resulting in high conductivity. To reduce the large leakage current of BFO, one attempt is fabricating donor doped BFO compounds and thin films. We report here the successful fabrication of the Nd, Ti co-doped $BiFeO_3$ ceramics and thin films by pulsed laser deposition technique.

  • PDF

Bi2Te3계 열전박막의 열전 출력인자에 미치는 첨가제의 영향 (Doping Effects to the Thermoelectric Power Factor of Bi2Te3 Thin Films)

  • 배상현;최순목
    • 한국전기전자재료학회논문지
    • /
    • 제33권2호
    • /
    • pp.141-146
    • /
    • 2020
  • Thermoelectric Bi2Te3 thin films were synthesized by a co-sputtering method at 300℃. A Fe dopant was considered to enhance the thermoelectric properties of the system. The Seebeck coefficient of the Fe-doped films increased whereas the electrical conductivity decreased. As a result, the power factor of the system increased owing to the enhanced Seebeck coefficient. Grain growth inhibition was detected in the Fe-doped system, which produced more grain boundaries in the Fe-doped films than in the undoped system. The increased grain boundary scattering was deemed to be effective for a reduced thermal conductivity. This is advantageous for the preparation of high-performance thermoelectric films.

화학용액 증착법으로 제조한 Bi0.9A0.1Fe0.975V0.025O3+α(A=Nd, Tb) 박막의 구조와 전기적 특성 (Microstructural and Electrical Properties of Bi0.9A0.1Fe0.975V0.025O3+α(A=Nd, Tb) Thin Films by Chemical Solution Deposition Method)

  • 장성근;김윤장
    • 한국전기전자재료학회논문지
    • /
    • 제30권10호
    • /
    • pp.646-650
    • /
    • 2017
  • We have evaluated the ferroelectric and electrical properties of pure $BiFeO_3$ (BFO) and $Bi_{0.9}A_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (A=Nd, Tb) thin films on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by using a chemical solution deposition method. The remnant polarization ($2P_r$) of the $Bi_{0.9}Tb_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (BTFVO) thin film was approximately $65{\mu}C/cm^2$, with a maximum applied electric field of 950 kV/cm and a frequency of 10 kHz, where as that of the $Bi_{0.9}Nd_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (BNFVO) thin film was approximately $37{\mu}C/cm^2$ with a maximum applied electric field of 910 kV/cm. The leakage current density of the co-doped BNFVO thin film was four orders of magnitude lower than that of the pure BFO thin film, at $2.75{\times}10^{-7}A/cm^2$ with an applied electric field of 100 kV/cm. The grain size and uniformity of the co-doped BNFVO and BTFVO thin films were improved, in comparison to the pure BFO thin film, through structural modificationsdue to the co-doping with Nd and Tb.

Sb/Bi비가 ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 바리스터의 소결과 입계 특성에 미치는 영향 (Effect of Sb/Bi Ratio on Sintering and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 Varistor)

  • 홍연우;이영진;김세기;김진호
    • 한국전기전자재료학회논문지
    • /
    • 제25권11호
    • /
    • pp.878-885
    • /
    • 2012
  • In this study we aims to examine the co-doping effects of 1/3 mol% $Mn_3O_4+Co_3O_4$ (1:1) on the reaction, microstructure, and electrical properties such as the bulk defects and grain boundary properties of $ZnO-Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi=0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Co-doped ZBS, ZBS(MCo) varistors were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed and promoted densification at lower temperature on heating in Sb/Bi=1.0 by Mn rather than Co. Pyrochlore on cooling was reproduced in all systems however, spinel (${\alpha}$- or ${\beta}$-polymorph) did not formed in Sb/Bi=0.5. More homogeneous microstructure was obtained in $Sb/Bi{\geq}1.0$ In ZBS(MCo), the varistor characteristics were improved drastically (non-linear coefficient, ${\alpha}$=30~49), and seemed to form $Zn_i^{..}$(0.17 eV) and $V_o^{\bullet}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy (IS & MS), the grain boundaries have divided into two types, i.e. the one is tentatively assign to $ZnO/Bi_2O_3(Mn,Co)/ZnO$ (0.47 eV) and the other ZnO/ZnO (0.80~0.89 eV) homojunctions.

Structure and Magnetic Properties of Ho and Ni Co-doped BiFeO3 Ceramics

  • Hwang, J.S.;Yoo, Y.J.;Park, J.S.;Kang, J.H.;Lee, K.H.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.183-183
    • /
    • 2014
  • Recently, multiferroic materials gain much attention due to their fascinating fundamental physical properties. These materials offer wide range of potential applications such as data storage, spintronic devices and sensors, where both electronic and magnetic polarizations can be coupled. Among single-phase multiferroic materials, $BiFeO_3$ is typical because of the room-temperature magnetoelectric coupling in view of long-range magnetic- and ferroelectric-ordering temperatures. However, $BiFeO_3$ is well known to have large leakage current and small spontaneous polarization due to the existence of oxygen vacancies and other defects. Furthermore the magnetic moment of pure $BiFeO_3$ is very weak owing to its antiferromagnetic nature. Recently, various attempts have been performed to improve the multiferroic properties of $BiFeO_3$ through the co-doping at the A and the B sites, by making use of the fact that the intrinsic polarization and magnetization are associated with the lone pair of $Bi^{3+}$ ions at the A sites and the partially-filled 3d orbitals of $Fe^{3+}$ ions at the B sites, respectively. In this study, $BiFeO_3$, $Bi_{0.9}Ho_{0.1}FeO_3$, $BiFe_{0.97}Ni_{0.03}O_3$ and $Bi_{0.9}Ho_{0.1}Fe_{0.97}Ni_{0.03}O_3$ bulk compounds were prepared by solid-state reaction and rapid sintering. High-purity $Bi_2O_3$, $Ho_2O_3$, $Fe_2O_3$ and $NiO_2$ powders with the stoichiometric proportions were mixed, and calcined at $500^{\circ}C$ for 24 h to produce the samples. The samples were immediately put into an oven, which was heated up to $800^{\circ}C$ and sintered in air for 1 h. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The field-dependent and temperature-dependent magnetization measurements were performed with a vibrating-sample magnetometer and superconducting quantum-interference device.

  • PDF