DOI QR코드

DOI QR Code

Doping Effects to the Thermoelectric Power Factor of Bi2Te3 Thin Films

Bi2Te3계 열전박막의 열전 출력인자에 미치는 첨가제의 영향

  • Bae, Sang Hyun (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Choi, Soon-Mok (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
  • 배상현 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 최순목 (한국기술교육대학교 에너지신소재화학공학부)
  • Received : 2019.09.24
  • Accepted : 2019.10.22
  • Published : 2020.03.01

Abstract

Thermoelectric Bi2Te3 thin films were synthesized by a co-sputtering method at 300℃. A Fe dopant was considered to enhance the thermoelectric properties of the system. The Seebeck coefficient of the Fe-doped films increased whereas the electrical conductivity decreased. As a result, the power factor of the system increased owing to the enhanced Seebeck coefficient. Grain growth inhibition was detected in the Fe-doped system, which produced more grain boundaries in the Fe-doped films than in the undoped system. The increased grain boundary scattering was deemed to be effective for a reduced thermal conductivity. This is advantageous for the preparation of high-performance thermoelectric films.

Keywords

References

  1. A. M. Ibrahim and D. A. Thompson, Mater. Chem. Phys., 12, 29 (1985). [DOI: https://doi.org/10.1016/0254-0584(85)90034-3]
  2. S. Cho, A. DiVenere, G. K. Wong, J. B. Ketterson, and J. R. Meyer, J. Appl. Phys., 85, 3655 (1999). [DOI: https://doi.org/10.1063/1.369729]
  3. C. B. Vining, W. Laskow, J. O. Hanson, R. R. Van der Beck, and P. D. Gorsuch, J. Appl. Phys., 69, 4333 (1991). [DOI:https://doi.org/10.1063/1.348408]
  4. C. Bera, M. Soulier, C. Navone, G. Roux, J. Simon, S. Volz, and N. Mingo, J. Appl. Phys., 108, 124306 (2010). [DOI:https://doi.org/10.1063/1.3518579]
  5. G. J. Snyder and E. S. Toberer, Nat. Mater., 7, 105 (2008). [DOI: https://doi.org/10.1038/nmat2090]
  6. W. S. Liu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen, and Z. Ren, Adv. Energy Mater., 1, 577 (2011). [DOI: https://doi.org/10.1002/aenm.201100149]
  7. H. J. Goldsmid, J. Appl. Phys., 32, 2198 (1961). [DOI: https://doi.org/10.1063/1.1777042]
  8. I. T. Witting, T. C. Chasapis, F. Ricci, M. Peters, N. A. Heinz, G. Hautier, and G. J. Snyder, Adv. Electron. Mater., 5, 1800904 (2019). [DOI: https://doi.org/10.1002/aelm.201800904]
  9. J. Y. Yang, T. Aizawa, A. Yamamoto, and T. Ohta, J. Alloys Compd., 312, 326 (2000). [DOI: https://doi.org/10.1016/S0925-8388(00)01159-2]
  10. T. S. Oh, D. B. Hyun, and N. V. Kolomoets, Scripta Mater., 42, 849 (2000). [DOI: https://doi.org/10.1016/S1359-6462(00)00302-X]
  11. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, Scripta Mater., 52, 347 (2005). [DOI: https://doi.org/10.1016/j.scriptamat.2004.10.038]
  12. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, and Z. Ren, Nano Lett., 8, 2580 (2008). [DOI: https://doi.org/10.1021/nl8009928]
  13. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science, 320, 634 (2008). [DOI: https://doi.org/10.1126/science.1156446]
  14. Y. Lan, B. Poudel, Y. Ma, D. Wang, M. S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett., 9, 1491 (2009). [DOI:https://doi.org/10.1021/nl803235n]
  15. V. A. Kulbachinskii, V. G. Kytin, A. A. Kudryashov, and P. M. Tarasov, J. Solid State Chem., 193, 47 (2012). [DOI:https://doi.org/10.1016/j.jssc.2012.03.042]
  16. S. E. Harrison, L. J. Collins-McIntyre, S. L. Zhang, A. A. Baker, A. I. Figueroa, A. J. Kellock, A. Pushp, S.S.P. Parkin, J. S. Harris, G. van der Laan, and T. Hesjedal, J. Phys. Condens. Matter., 27, 245602 (2015). [DOI: https://doi.org/10.1088/0953-8984/27/24/245602]
  17. Z. G. Chen, L. Yang, S. Ma, L. Cheng, G. Han, Z. D. Zhang, and J. Zou, Appl. Phys. Lett., 104, 053105 (2014). [DOI: https://doi.org/10.1063/1.4863966]
  18. S. E. Harrison, L. J. Collins-McIntyre, S. Li, A. A. Baker, L. R. Shelford, Y. Huo, A. Pushp, S.S.P. Parkin, J. S. Harris, E. Arenholz, G. van der Laan, and T. Hesjedal, J. Appl. Phys., 115, 023904 (2014). [DOI: https://doi.org/10.1063/1.4861615]
  19. M. D. Watson, L. J. Collins-McIntyre, L. R. Shelford, A. I. Coldea, D. Prabhakaran, S. C. Speller, T. Mousavi, C.R.M. Grovenor, Z. Salman, S. R. Giblin, G. van der Laan, and T. Hesjedal, New J. Phys., 15, 103016 (2013). [DOI: https://doi.org/10.1088/1367-2630/15/10/103016]
  20. J. S. Lee, A. Richardella, D. W. Rench, R. D. Fraleigh, T. C. Flanagan, J. A. Borchers, J. Tao, and N. Samarth, Phys. Rev. B, 89, 174425 (2014). [DOI: https://doi.org/10.1103/PhysRevB.89.174425]
  21. A. Singh, R. Singh, T. Patel, G. S. Okram, A. Lakhani, V. Ganeshan, A. K. Ghosh, S. N. Jha, S. Patil, and S. Chatterjee, Mater. Res. Bull., 98, 1 (2018). [DOI: https://doi.org/10.1016/j.materresbull.2017.09.060]
  22. Z. H. Wang, X.P.A. Gao, and Z. D. Zhang, Chin. Phys. B, 27, 107901 (2018). [DOI: https://doi.org/10.1088/1674-1056/27/10/107901]
  23. J. Bludska, I. Jakubec, C. Drasar, P. Lostak, and J. Horak, Philos. Mag., 87, 325 (2007). [DOI: https://doi.org/10.1080/14786430600990337]
  24. K. H. Seo, B. G. Kim, C. H. Lim, S. H. Kim, K. M. Lee, J. Y. Kim, and S. M. Choi, CrystEngComm, 19, 2750 (2017). [DOI: https://doi.org/10.1039/C7CE00192D]
  25. H. Mun, K. H. Lee, S. J. Kim, J. Y. Kim, J. H. Lee, J. H. Lim, H. J. Park, J. W. Roh, and S. W. Kim, Materials, 8, 959 (2015). [DOI: https://doi.org/10.3390/ma8030959]
  26. J. Liang, X. Yao, Y. J. Zhang, F. Chen, Y. Chen, and I. K. Sou, Nanomaterials, 9, 782 (2019). [DOI: https://doi.org/10.3390/nano9050782]
  27. K. Davami, J. S. Lee, and M. Meyyappan, J. Korean Inst. Electr. Electron. Mater. Eng., 12, 227 (2011). [DOI: https://doi.org/10.4313/TEEM.2011.12.6.227]