• 제목/요약/키워드: Bhattacharyya distance

검색결과 27건 처리시간 0.032초

Multimodal 데이터에 대한 분류 에러 예측 기법 (Error Estimation Based on the Bhattacharyya Distance for Classifying Multimodal Data)

  • 최의선;김재희;이철희
    • 대한전자공학회논문지SP
    • /
    • 제39권2호
    • /
    • pp.147-154
    • /
    • 2002
  • 본 논문에서는 multimodal 특성을 갖는 데이터에 대하여 패턴 분류 시 Bhattacharyya distance에 기반한 에러 예측 기법을 제안한다. 제안한 방법은 multimodal 데이터에 대하여 분류 에러와 Bhattacharyya distance를 각각 실험적으로 구하고 이 둘 사이의 관계를 유추하여 에러의 예측 가능성을 조사한다. 본 논문에서는 분류 에러 및 Bhattacharyya distance를 구하기 위하여 multimodal 데이터의 확률 밀도 함수를 정규 분포 특성을 갖는 부클래스들의 조합으로 추정한다. 원격 탐사 데이터를 이용하여 실험한 결과, multimodal 데이터의 분류 에러와 Bhattacharyya distance 사이에 밀접한 관련이 있음이 확인되었으며, Bhattacharyya distance를 이용한 에러 예측 가능성을 보여주었다.

Multimodal 분포 데이터를 위한 Bhattacharyya distance 기반 분류 에러예측 기법 (Estimation of Classification Error Based on the Bhattacharyya Distance for Data with Multimodal Distribution)

  • 최의선;이철희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.85-87
    • /
    • 2000
  • In pattern classification, the Bhattacharyya distance has been used as a class separability measure and provides useful information for feature selection and extraction. In this paper, we propose a method to predict the classification error for multimodal data based on the Bhattacharyya distance. In our approach, we first approximate the pdf of multimodal distribution with a Gaussian mixture model and find the bhattacharyya distance and classification error. Exprimental results showed that there is a strong relationship between the Bhattacharyya distance and the classification error for multimodal data.

  • PDF

Bhattacharyya distance 기반 특징 추출 기법 (Feature Extraction Method Using the Bhattacharyya Distance)

  • 최의선;이철희
    • 대한전자공학회논문지SP
    • /
    • 제37권6호
    • /
    • pp.38-47
    • /
    • 2000
  • Bhattacharyya distance는 패턴 분류 문제에 있어서 클래스간 분리도 측정의 수단으로 사용되어 왔으며 특징 추출 시 유용한 정보를 제공한다. 본 논문에서는 최근 발표된 Bhattacharyya distance를 이용한 에러 예측 기법을 이용하여 예측된 분류 에러가 최소가 되는 특정 벡터를 추출하는 방법에 대하여 제안한다. 제안한 특징 추출 기법은 최적화 알고리즘인 전체탐색 및 순차탐색 방법의 적용 시 분류 에러를 직접 구하지 않고 Bhattacharyya distance를 이용하여 분류 에러를 예측하므로 고차원 데이터의 경우 고속의 특징 추출이 가능하며, 에러 예측 성질을 이용하여 패턴 분류 시 필요한 최소 특징 벡터의 수를 예측할 수 있는 장점이 있다.

  • PDF

Bhattacharyya Distance에 기반한 다중클래스 문제에 대한 피춰 추출 기법 (Feature Extraction Method based on Bhattacharyya Distance for Multiclass Problems)

  • 최의선;이철희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.643-646
    • /
    • 1999
  • In this paper, we propose a feature extraction method based on Bhattacharyya distance for multiclass problems. The Bhattacharyya distance provides a valuable information in determining the effectiveness of a feature set and has been used as separability measure for feature selection. Recently, a feature extraction algorithm hat been proposed for two normally distributed classes based on Bhattacharyya distance. In this paper, we propose to expand the previous approach to multiclass cases. Experiment results show that the proposed method compares favorably with the conventional methods.

  • PDF

Edge Detection Based on Bhattacharyya Distance for Color Images Using Adaptive Boundary and Thresholding

  • Badripour, Afarin;Lee, Chulhee
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 추계학술발표대회
    • /
    • pp.944-945
    • /
    • 2017
  • Color image edge detection is an important operation in many image processing areas. This paper presents a new method for edge detection based on the Bhattacharyya distance that can handle arbitrary boundaries by exploring several edge patterns. Experiments show promising results compared to some existing methods.

바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템 (Phoneme Similarity Error Correction System using Bhattacharyya Distance Measurement Method)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권6호
    • /
    • pp.73-80
    • /
    • 2010
  • 어휘 인식 시스템은 부정확한 어휘 제공과 유사한 음소 인식으로 인식률이 저하되며 이는 유사한 음소인식 오인식과 효율적 특징 추출 처리를 위한 방법을 필요로 한다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템을 제안하였다. 음소 유사율은 모노폰으로 훈련시킨 훈련 데이터의 음소에 HMM 특징 추출 방법을 이용하였으며 유사한 음소는 바타챠랴 거리 측정법을 이용하여 정확한 음소로 인식할 수 있도록 유도하여 인식률 향상 효과를 얻을 수 있었다. 이를 유클리디안 거리 측정법과 동적타임 워핑 시스템에 비교한 시스템 성능 평가 결과 1.2%의 향상된 97.91% 인식률을 보였다.

Bhattacharyya 커널을 적용한 Centroid Neural Network (Centroid Neural Network with Bhattacharyya Kernel)

  • 이송재;박동철
    • 한국통신학회논문지
    • /
    • 제32권9C호
    • /
    • pp.861-866
    • /
    • 2007
  • 본 논문은 가우시안 확률분포함수 (Gaussian Probability Distribution Function) 데이터 군집화를 위해 중심신경망 (Centroid Neural Network, CNN)에 Bhattacharyya 커널을 적용한 군집화 알고리즘 (Bhattacharyya Kernel based CNN, BK-CNN)을 제안한다. 제안된 BK-CNN은 무감독 알고리즘인 중심신경망을 기반으로 하고 있으며, 커널 방법을 이용하여 데이터를 특징공간에서 투영한다. 입력공간의 비선형 문제를 선형적으로 해결하기 위해 제안한 커널 방법인데, 확률분포 사이의 거리측정을 위해 Bhattacharyya 거리를 이용한 커널방법을 사용하였다. 제안된 BK-CNN을 영상데이터 분류의 문제에 적용했을 때, 제안된 BK-CNN 알고리즘이 Bhattacharyya 커널을 적용한 k-means, 자기조직지도(Self-Organizing Map)와 중심 신경망등의 기존 알고리즘보다 1.7% - 4.3%의 평균 분류정확도 향상을 가져옴을 확인할 수 있었다.

SOME INEQUALITIES FOR THE $CSISZ{\acute{A}}R\;{\Phi}-DIVERGENCE$

  • Dragomir, S.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제7권1호
    • /
    • pp.63-77
    • /
    • 2003
  • Some inequalities for the $Csisz{\acute{a}}r\;{\Phi}-divergence$ and applications for the Kullback-Leibler, $R{\acute{e}}nyi$, Hellinger and Bhattacharyya distances in Information Theory are given.

  • PDF

바타챠랴 거리 측정 기법을 사용한 가우시안 모델 기반 음소 인식 향상 (Improving Phoneme Recognition based on Gaussian Model using Bhattacharyya Distance Measurement Method)

  • 오상엽
    • 한국멀티미디어학회논문지
    • /
    • 제14권1호
    • /
    • pp.85-93
    • /
    • 2011
  • 기존의 어휘 인식에서는 일반적인 벡터 값을 데이터베이스를 이용하여 구하므로 탐색 중에 형성되는 음소를 처리하지 못하는 문제점을 제공하며, 음소 데이터에 대한 모델을 구성할 수 없는 단점으로 인하여 가우시안 모텔의 정확성을 확보하지 못하게 된다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 바타챠랴 거리 측정법을 이용하여 정확한 음소로 인식할 수 있도록 유도하였으며 유사 음소 인식과 오인식 오류를 최소화하여 인식률을 향상시켰다. 연속 확률 분포의 공유로부터 가우시안 모델 최적화를 실험한 결과 향상된 신뢰도로 인해 높은 인식 성능을 확인하였으며, 본 논문에서 제안한 바타챠랴 거리 측정법을 이용하여 실험한 결과 기존의 방법들에 비하여 평균 1.9%의 성능 향상을 나타내었으며 신뢰성을 바탕으로 인식율에서 평균 2.9%의 성능 향상을 나타내었다.

알파 다이버전스를 이용한 무게중심 모델 기반 음악 유사도 (Centroid-model based music similarity with alpha divergence)

  • 서진수;김정현;박지현
    • 한국음향학회지
    • /
    • 제35권2호
    • /
    • pp.83-91
    • /
    • 2016
  • 음악 유사도 계산은 음악 검색 및 분류 등의 정보 처리 시스템 구현에 있어서 가장 중요한 부분이다. 본 논문은 최근 제안된 무게중심 모델을 이용한 음악 검색 방법에 대해서 살펴보고, 무게중심 모델의 확률 분포 유사도를 이용하여 음악 검색을 수행하고 성능을 평가하였다. 확률 분포간의 거리는 주어진 두 개의 확률 분포가 특정 기준에서 얼마나 가까운 지를 계산하는 것으로 다이버전스라고 불리기도 한다. 본 논문에서는 무게중심 모델에서 확률 분포 간의 거리 비교 시에 알파 다이버전스를 활용하였다. 알파 다이버전스는 알파 값에 따라 다양한 형태를 가지며, 널리 사용되고 있는 KLD(Kullback-Leibler)와 BD(Bhattacharyya Distance)를 포함한다. 음악 장르와 가수 데이터셋에서 검색 실험을 수행했고, 확률 분포 거리 기반 유사도와 벡터 거리 기반 유사도의 음악 검색 성능을 비교하였다. 알파 다이버전스를 통해서 무게중심 모델 기반 음악 검색 성능을 개선시킬 수 있음을 보였다.