• 제목/요약/키워드: Between Centrality

검색결과 380건 처리시간 0.028초

The Framework of Research Network and Performance Evaluation on Personal Information Security: Social Network Analysis Perspective (개인정보보호 분야의 연구자 네트워크와 성과 평가 프레임워크: 소셜 네트워크 분석을 중심으로)

  • Kim, Minsu;Choi, Jaewon;Kim, Hyun Jin
    • Journal of Intelligence and Information Systems
    • /
    • 제20권1호
    • /
    • pp.177-193
    • /
    • 2014
  • Over the past decade, there has been a rapid diffusion of electronic commerce and a rising number of interconnected networks, resulting in an escalation of security threats and privacy concerns. Electronic commerce has a built-in trade-off between the necessity of providing at least some personal information to consummate an online transaction, and the risk of negative consequences from providing such information. More recently, the frequent disclosure of private information has raised concerns about privacy and its impacts. This has motivated researchers in various fields to explore information privacy issues to address these concerns. Accordingly, the necessity for information privacy policies and technologies for collecting and storing data, and information privacy research in various fields such as medicine, computer science, business, and statistics has increased. The occurrence of various information security accidents have made finding experts in the information security field an important issue. Objective measures for finding such experts are required, as it is currently rather subjective. Based on social network analysis, this paper focused on a framework to evaluate the process of finding experts in the information security field. We collected data from the National Discovery for Science Leaders (NDSL) database, initially collecting about 2000 papers covering the period between 2005 and 2013. Outliers and the data of irrelevant papers were dropped, leaving 784 papers to test the suggested hypotheses. The co-authorship network data for co-author relationship, publisher, affiliation, and so on were analyzed using social network measures including centrality and structural hole. The results of our model estimation are as follows. With the exception of Hypothesis 3, which deals with the relationship between eigenvector centrality and performance, all of our hypotheses were supported. In line with our hypothesis, degree centrality (H1) was supported with its positive influence on the researchers' publishing performance (p<0.001). This finding indicates that as the degree of cooperation increased, the more the publishing performance of researchers increased. In addition, closeness centrality (H2) was also positively associated with researchers' publishing performance (p<0.001), suggesting that, as the efficiency of information acquisition increased, the more the researchers' publishing performance increased. This paper identified the difference in publishing performance among researchers. The analysis can be used to identify core experts and evaluate their performance in the information privacy research field. The co-authorship network for information privacy can aid in understanding the deep relationships among researchers. In addition, extracting characteristics of publishers and affiliations, this paper suggested an understanding of the social network measures and their potential for finding experts in the information privacy field. Social concerns about securing the objectivity of experts have increased, because experts in the information privacy field frequently participate in political consultation, and business education support and evaluation. In terms of practical implications, this research suggests an objective framework for experts in the information privacy field, and is useful for people who are in charge of managing research human resources. This study has some limitations, providing opportunities and suggestions for future research. Presenting the difference in information diffusion according to media and proximity presents difficulties for the generalization of the theory due to the small sample size. Therefore, further studies could consider an increased sample size and media diversity, the difference in information diffusion according to the media type, and information proximity could be explored in more detail. Moreover, previous network research has commonly observed a causal relationship between the independent and dependent variable (Kadushin, 2012). In this study, degree centrality as an independent variable might have causal relationship with performance as a dependent variable. However, in the case of network analysis research, network indices could be computed after the network relationship is created. An annual analysis could help mitigate this limitation.

Materialism and Attitude toward Purchasing Foreign Luxury Brands: The Moderating Effect of Consumer Ethnocentrism (물질주의와 해외 명품브랜드 구매 태도: 소비자 자국주의의 조절 효과)

  • 박혜정;전경숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • 제28권9_10호
    • /
    • pp.1197-1207
    • /
    • 2004
  • The purpose of this study was to identify the impact of materialism on the attitude toward purchasing foreign luxury brands and the moderating effect of consumer ethnocentrism on this impact. Data were gathered by surveying university students living in Seoul metropolitan area using convenient sampling, and 325 questionnaires were used in the statistical analysis. In analysing data, confirmatory factor analysis and path analysis were conducted using structural equation modeling. Results showed that success factor of materialism gave rise to negative attitude toward purchasing foreign luxury brands while centrality factor of materialism spurred positive attitude. Consumer ethnocentrism also showed a significant effect as a moderator on the relationship between materialism and attitude: The relationship between materialism and attitude was stronger among subjects who had lower consumer ethnocentric tendencies than among subjects who had higher consumer ethnocentric tendencies.

The Effect of Centralities of Alliance Network on Innovation Performace in Korean Defense Industry (한국 방위산업 제휴네트워크 중심성이 혁신성과에 미치는 영향)

  • Ahn, Hoil;Kim, Changone;Lee, Heesang
    • Journal of Korea Technology Innovation Society
    • /
    • 제18권2호
    • /
    • pp.292-317
    • /
    • 2015
  • As modern science and technology and warfare become to be advanced and precise, the weapon systems becomes more complex based on state-of-the-art technology. Therefore, firms in the defense industry continue to accelerate research and development for up-to-date weapon systems with high complexity which urge the firms to collaborate with the external organizations to obtain the knowledge required and eventually to reduce costs and risk. This study tries an empirical study about the effect of collaboration on the innovation performances from the network analysis perspective. By surveying collaboration relationships among 530 firms in the Korean defense industry, we analyzed the alliance network of the defense industry. Network centrality including degree, closeness, and betweenness centralities is investigated and then the relationship among the network centrality property, internal R&D capabilities and innovation is analysed. The results show that firms with high internal R&D capabilities place the firm at center of the network. On the other hand, except for the firms with highly connected centrality, no relationship was found between the internal R&D capabilities and its performance and in turn. these capabilities had both direct and indirect effects on innovation performances through mediated collaboration among firms. This study implied that Korean firms with a high internal R&D capabilities in the defense industry which utilize knowledge, information and resources within the network more frequently show more innovative performance. This result claims the policy makers to participate more firms in fostering open innovation for the defense industry.

Analysis of Trends in Science and Technology using Keyword Network Analysis (키워드 네트워크 분석을 활용한 과학기술동향 분석)

  • Park, Ju Seop;Kim, Na Rang;Han, Eun Jung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제23권2호
    • /
    • pp.63-73
    • /
    • 2018
  • Academia and research institutes mainly use qualitative methods that rely on expert judgments to understand and predict research trends and science and technology trends. Since such a technique has the disadvantage of requiring much time and money, in this study, science and technology trends were predicted using keyword network analysis. To that end, 13,618 AI (Artificial Intelligence) patent abstracts were analyzed using keyword network analysis in three separate lots based on the period of the submission of each abstract: analysis period 1 (January 1, 2002 - December 31, 2006), analysis period 2 (January 1, 2007 - December 31, 2011), and analysis period 3 (January 1, 2012 - December 31, 2016). According to the results of frequency analyses, keywords related to methods in the field of AI application appeared more frequently as time passed from analysis period 1 to analysis period 3. In keyword network analyses, the connectivity between keywords related to methods in the field of AI application and other keywords increased over time. In addition, when the connected keywords that showed increasing or decreasing trends during the entire analysis period were analyzed, it could be seen that the connectivity to methods and management in the field of AI application was strengthened while the connectivity to the field of basic science and technology was weakened. According to analysis of keyword connection centrality, the centrality value of the field of AI application increased over time. According to analysis of keyword mediation centrality during analysis period 3, keywords related to methodologies in the field of AI application showed the highest mediation value. Therefore, it is expected that methods in the field of AI application will play the role of powerful intermediaries in AI hereafter. The technique presented in this paper can be employed in the excavation of tasks related to regional innovation or in fields such as social issue visualization.

Analysis of SCI Journals Cited by Korean Journals in the Computer field

  • Kim, Byungkyu;You, Beom-Jong;Kang, Ji-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • 제24권11호
    • /
    • pp.79-86
    • /
    • 2019
  • It is very important to analyze and provide information resources for research output produced in the computer field, the core science of the 4th Industrial Revolution. In this paper, SCI journals cited from domestic journals in the computer field were identified and the citation rankings and their co-citation networks were generated, analyzed, mapped and visualized. For this, the bibliographic and citation index information from 2015 to 2017 in the KSCD were used as the basis data, and the co-citation method and network centrality analysis were used. As a result of this study, the number of citations and the citation ranks of SCI journals and papers cited by korean journals in the computer field were analyzed, and peak time(2 years), half-life(6.6 years), and immediacy citation rate(2.4%) were measured by citation age analysis. As a result of network centrality analysis, Three network centralities(degree, betweenness, closeness) of the cited SCI journals were calculated, and the ranking of journals by each network centrality was measured, and the relationship between the subject classifications of the cited SCI journals was visualized through the mapping of the network.

Women's Field Hockey Pass Analysis using Social Network Theory (사회연결망 이론을 활용한 여자필드하키 패스분석)

  • Choi, Eun-Young;Kim, Ji-Eung;Lee, Seung-Hun;Park, Jong-Chul
    • Journal of Digital Convergence
    • /
    • 제17권9호
    • /
    • pp.471-477
    • /
    • 2019
  • The purpose of this study is to analyse the attacking pattern of the key player through plenty of passes on field hockey between the winning games and losing ones through the preliminary game and the tournament. It has shown that the Korean women national team on field hockey is analysed all the passes through the sportscode for the 6 games of the World-League Final, and is investigated the centrality through the social network analysis using the R analytic software. The result is followed : First, It has shown three tendencies on the preliminary games that it has shown a lower Degree-Centrality, a same with Closeness, and a higher Betweenness than the tournament. Second, It has also described on winning games that it has explained a lower Degree-Centrality, a same with Closeness, and a higher Betweenness than losing games. On the conclusion, it has revealed that Korean women national team on field hockey showed a tendency that prefer to use a counter-attacking. Based on these study, expect to be used as a way to analyze performance in the field.

Technological Cooperation Network Analysis through Patent Analysis of Autonomous Driving Technology (자동차 자율주행 기술 특허분석을 통한 기술협력 네트워크 분석)

  • Lim, Ho-Geun;Kim, Byungkeun;Jeong, Euiseob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제21권12호
    • /
    • pp.688-701
    • /
    • 2020
  • This study analyzes the characteristics and change factors of technological cooperation networks in the automotive industry. Using Social Network Analysis (SNA) of 112,009 autonomous driving-related patents filed from 2000 to 2017 by major automotive firms in the world, we investigate the structure of the technological cooperation network. Network characteristics such as density are analyzed through structural characteristic analysis among the network analysis indicators. The structural characteristics of the technology cooperation network are confirmed through analysis of status characteristic indicators, such as the degree of centrality, betweenness centrality, and closeness centrality. Results show that car makers such as Toyota and Hyundai Motors, as well as parts suppliers such as Bosch and Continental, have high-performance technology developments related to autonomous driving. The structural characteristics of the network show that companies participating in cooperative networks for autonomous driving technology development have increased in number and are diversified, and all of the status characteristics indicators have decreased. This can be interpreted as an increasing number of horizontal and complementary forms of technological cooperation between firms. In addition, it was confirmed that the number of participants in the field of autonomous driving technology has increased, and the networks have become more complex.

Analysis of Research Trends in Information Literacy Education Using Keyword Network Analysis and Topic Modeling (키워드 네트워크 분석과 토픽모델링을 활용한 정보활용교육 연구 동향 분석)

  • Jeong-Hoon, Lim
    • Journal of the Korean Society for information Management
    • /
    • 제39권4호
    • /
    • pp.23-48
    • /
    • 2022
  • The purpose of this study is to investigate the flow of domestic information literacy education research using keyword network analysis and topic modeling and to explore the direction of information literacy education in the future. For this reason, 306 academic papers related to information literacy education published in academic journals of the library and information science field in Korea were chosen. And through the preprocessing process for abstracts of the paper, total keyword appearance frequency, keyword appearance frequency by period, and keyword simultaneous occurrence frequency were analyzed. Subsequently, keyword network analysis analyzed the degree centrality, between centrality, and eigenvector centrality of keywords. Using structural topic modeling analysis, 15 topics -curriculum, information literacy effect, contents of information literacy education, school library education, information media literacy, information literacy ability evaluation index, library anxiety, public library program, health information literacy ability, digital divide, library assisted instruction improvement, research trend, information literacy model, and teacher role-were derived. In addition, the trend of topics by year was analyzed to confirm the change in relative weight by topic. Based on these results, the direction of information literacy education and the suggestions for follow-up research were presented.

Study on the Analysis of National Paralympics by Utilizing Social Big Data Text Mining (소셜 빅데이터 텍스트 마이닝을 활용한 전국장애인체육대회 분석 연구)

  • Kim, Dae kyung;Lee, Hyun Su
    • 한국체육학회지인문사회과학편
    • /
    • 제55권6호
    • /
    • pp.801-810
    • /
    • 2016
  • The purpose of the study was to conduct a text mining examining keywords related to the National Paralympics and provide the fundamental information that would be used to change perception of people without disabilities toward disabilities and to promote the social participation of people with and without disabilities in the National Paralympics. Social big data regarding the National Paralympics were retrieved from news articles and blog postings identified by search engines, Naver, Daum, and Google. The data were then analysed using R-3.3.1 Version Program. The analysing techniques were cloud analysis, correlation analysis and social network analysis. The results were as follows. First, news were mainly related to game results, sports events, team participation and host avenue of the 33rd ~ 36th National Paralympics. Second, search results about the 33rd ~ 36th National Paralympics between Naver, Daum, and Google were similar to one another. Thirds, the keywrods, National Paralympics, sports for the disabled, and sports, demonstrated a high close centrality. Further, degree centrality and betweenness centrality were associated in the keywords such as sports for all, participation, research, development, sports-disabled, research-disabled, sports for all-participation, disabled-participation, sports for all-disabled, and host-paralympics.

A Data-Driven Approach and Network Analysis of Technological Innovation Resources in SMEs (데이터 기반 접근법을 활용한 중소기업 기술혁신자원의 네트워크 분석)

  • Kyung Min An;Young-Chan Lee
    • Knowledge Management Research
    • /
    • 제24권4호
    • /
    • pp.103-129
    • /
    • 2023
  • This study aims to analyze the network structure of technological innovation resources in SMEs, especially manufacturing firms, and reveal the differences between innovative and non-innovative firms. The study first analyzes connection centrality, flow-mediated centrality, and power centrality for all firms, and derives structural equivalence through CONCOR analysis. Then, the network structure of innovative and non-innovative firms was compared and analyzed according to innovation performance and creation. The results show that entrepreneurship and corporate innovation strategy have a significant impact on the analysis of technological innovation resources of all firms. According to the CONCOR analysis, the innovation resources of SMEs are organized into seven clusters, which can be defined as intrinsic product innovation resources, competitive advantage promotion resources, cooperative activities resources, information system resources, and innovation protection resources. The network analysis of innovative and non-innovative firms showed that innovative firms focused on enhancing competitiveness and improving quality, while non-innovative firms tended to focus more on existing products and customers. In addition, innovative firms had eight clusters, while non-innovative firms had six clusters, suggesting that innovative firms utilize resources diversely to pursue structural change and new value creation, while non-innovative firms operate technological innovation resources in a more stable form. This study emphasizes the importance of entrepreneurship and corporate innovation strategy in SMEs' technological innovation, and suggests that strong internal efforts are needed to increase innovativeness. These findings have important implications for strategy formulation and policy development for technological innovation in SMEs.